Oligonucleotide Analogues with Integrated Bases and Backbone

Part 221)

Synthesis and Association of Thiomethylene-Linked Self-Complementary AUAU and UAUA Tetramers

by Bruno Bernet, Zeena Johar, Anne Ritter, Bernhard Jaun*, and Andrea Vasella*

Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang Pauli-Strasse 10, CH-8093 Zürich (e-mail: vasella@org.chem.ethz.ch)

The tritylated and silylated self-complementary $A^{*}[s]U^{*}[s]A^{*}[s]U^{*}$ and $U^{*}[s]A^{*}[s]U^{*}[s]A^{*}$ tetramers **18** and **24**, linked by thiomethylene groups (abbreviated as [s]) between a nucleobase and C(5') of the neighbouring nucleoside unit were prepared by a linear synthesis based on *S*-alkylation of 5'-thionucleosides by 6-(chloromethyl)uridines, **7** or **10**, or 8-(chloromethyl)adenosines, **12** or **15**. The tetramers **18** and **24** were detritylated to the monoalcohols **19** and **25**, and these were desilylated to the diols **20** and **26**, respectively. The association of the tetramers **18**–**21** and **24**–**26** in CDCl₃ or in CDCl₃/(D₆)DMSO 95:5 was investigated by the concentration dependence of the chemical shifts for H–N(3) or H₂N–C(6). The formation of cyclic duplexes connected by four base pairs is favoured by the presence of one and especially of two OH groups. The diol **20** with the AUAU sequence prefers reverse-*Hoogsteen*, and diol **26** with the UAUA sequence *Watson – Crick* base pairing. The structure of the cyclic duplex of **26** in CDCl₃ at 2° was derived by a combination of AMBER* modeling and simulated annealing with NMR-derived distance and torsion-angle restraints resulting in a *Watson – Crick* base-paired right-handed antiparallel helix showing large roll angles, especially between the centre base pairs, leading to a bent helix axis.

Introduction. – In the course of exploring oligoribonucleotide analogues wherein the backbone of oligonucleotides is replaced by linking elements between nucleobases (ONIBs [2]), we investigated the pairing of the self-complementary $U^*[s]A^{(*)}$ and $A^*[s]U^{(*)}$ dinucleosides²) **1**–**5** (*Fig. 1*) [3]. Their pairing, *i.e.*, their association to form cyclic duplexes, depends on the sequence, and on whether the CH₂OH groups of units I and II are protected or not. Thus, the U*[s]A^(*) alcohols **1** and **2** possessing a C(5[']/ II)OH or a C(8)CH₂OH group form preferentially cyclic duplexes, while the fully protected analogues **3** form only linear duplexes and higher associates. In the A*[s]U^(*) series, only the alcohol **4** forms (mainly) cyclic duplexes, whereas the dinucleosides **5** lead predominantly to linear duplexes and higher associates, irrespectively of whether

¹) Part 21: [1].

²) Conventions for abbreviated notation: The substitution at C(6) of pyrimidines and C(8) of purines is denoted by an asterisk (*); for example, U* and A* for hydroxymethylated uridine and adenosine derivatives, respectively. U^(*) and A^(*) represent both unsubstituted and hydroxymethylated nucleobases. The moiety x linking C(6)-CH₂ or C(8)-CH₂ (of unit II) and C(5') (of unit I) is indicated in square brackets, *i.e.*, [c] for a C-atom, [o] for an O-, and [s] for a S-atom.

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

HO-C(5'/II) is protected or not. The conformations of the cyclic duplexes of these dinucleosides have been analysed, while the influence of the terminal CH₂OH groups has not been explored in similarly detailed way [3].

Fig. 1. The self-complementary $U^*[s]A^{(*)}$ dimers 1 and 2 and the $A^*[s]U^{(*)}$ dimer 4 prefer the formation of cyclic duplexes, whereas the $U^*[s]A^{(*)}$ dimers 3 and the $A^*[s]U^{(*)}$ dimer 5 form mainly linear duplexes and higher associates. TDS = (thexyl)(dimethyl)silyl (thexyl = 1,1,2-trimethylpropyl), MMTr = (monomethoxy)trityl = (4-methoxyphenyl)diphenylmethyl.

In continuing the exploration of thiomethylene-linked ONIBs it appeared of interest to analyse the pairing of the self-complementary $U^*[s]A^*[s]U^*[s]A^*$ and $A^*[s]U^*[s]A^*[s]U^*$ tetranucleosides to further assess the effect of the terminal OH groups on pairing, to test for an extrapolation of the previous conformational analysis, and to gain information about the cyclic duplexes. We describe the synthesis of these tetranucleosides, the analysis of their association, and the structure of one of the duplexes.

Results and Discussion. – 1. Synthesis of the $A^*[s]U^*[s]A^*[s]U^*$ and $U^*[s]A^*[s]U^*[s]A^*$ Tetranucleosides. The synthesis is based on the nucleophilic substitution, by a thiol or thiolate anion, of uridine or adenosine derivatives possessing a C(6) or C(8) halogenomethyl group, respectively. We opted for a linear rather than a convergent strategy, as it requires fewer building blocks. Four building blocks (*Scheme 1*) are required for the linear synthesis of a tetramer (or a higher oligomer). Two building blocks corresponding to the terminal unit I (*Schemes 2* and 3) possess a C(5')SH and a protected hydroxymethyl group at C(6) or C(8), and act exclusively as nucleophile. Two building blocks corresponding to the internal units II and III of the tetramer possess a protected thiol and a halogenomethyl group, and act in sequence as electrophile and as nucleophile. Two further monomers corresponding to unit IV possess a halogenomethyl and a protected hydroxy group at C(5'), and act solely as electrophile. Exploratory experiments showed that protection of the thiol group by acetylation is appropriate, as the thiol group can be regenerated by treatment with

 K_2CO_3 in MeOH without affecting the AcS group at C(5') of the electrophilic monomer under the conditions (K_2CO_3 in DMF) of the nucleophilic substitution.

a) MeSO₂Cl (MsCl), 4-(dimethylamino)pyridine (DMAP), CH₂Cl₂; 74% of **7**; 91% of **10**; 61% of **12**; 96% of **15**. *b*) Cl₂CHCO₂H, Et₃SiH, CH₂Cl₂; 73% of **9**; 96% of **14**. TDS = thexyldimethylsilyl (thexyl = 1,1,2-trimethylpropyl), MMTr = (monomethoxy)trityl = (4-methoxyphenyl)diphenylmethyl.

The preparation of the monomers 8, 15, 10, and 12, required for the synthesis of the $A^{s}[s]U^{s}[s]A^{s}[s]U^{*}$ tetramer, and of the additional building blocks 13 and 7, required for the U*[s]A*[s]U*[s]A* sequence isomer, is shown in *Scheme 1*. The monomers 7 and 12 corresponding to units IV were obtained in 74 and 61% yield, respectively, by treating the known alcohols 6 and 11 [3] with MsCl and 4-(dimethylamino)pyridine (DMAP) in CH₂Cl₂.

The tritylated thioacetates **8** and **13** corresponding to unit I are known [3]. Their detritylation with $Cl_2CHCOOH$ and Et_3SiH in CH_2Cl_2 , followed by treatment of the resulting alcohols **9** and **14** with MsCl and DMAP in CH_2Cl_2 , gave the chlorides **10** (66%) and **15** (92%), respectively, corresponding to units II and III of the tetramers.

The ¹H- and ¹³C-NMR data of **7**, **9**, **10**, **12**, **14**, and **15** are listed in *Tables 4* and 5 in the *Exper. Part.* The chemical shift for H-C(2') of the uridines **7**, **9**, and **10** in CDCl₃ at 5.25–5.26 ppm evidences the *syn*-orientation of the nucleobase. In the adenosine

series, only the silvl ether **12** (δ (H–C(2')) = 5.83 ppm) adopts completely the *syn*conformation, whereas substantial amounts of the *anti*-conformer of the thioacetates **14** (5.63 ppm) and **15** (5.74 ppm) are revealed by an upfield shift for H–C(2'), in agreement with earlier observations [3]. A 1:1 equilibrium of the *gt*- and *tg*-conformers of the uridine and adenosine derived thioacetates **9**, **10**, **14**, and **15** is deduced from J(4,5'a) and J(4,5'b) values of 6.9–7.5 Hz, whereas slightly smaller values for the silvl ether **12** (6.0 and 5.7 Hz) reveal a minor contribution of the *gg*-conformer. Signal overlap of the silvl ether **7** prevented the determination of the rotameric equilibrium.

The synthesis of the A*[s]U*[s]A*[s]U* tetramer 21 started by forming dimer 16 (*Scheme 2*). It was obtained in a yield of 67% by substituting the chloride 15 under basic conditions with the thiol obtained upon deacetylation of the trityl ether 8. Similarly, trimer 17 was prepared in a yield of 42% by deacetylating 16 and treating the resulting thiol with the chloride 10. Deacetylation of 17 and reaction with the chloride 12 resulted in 44% of the tetramer 18. Debenzoylation of 18 with MeONa in MeOH gave the diamine 19 (65%) that was detritylated to the mono-alcohol 20 (24%). Desilylation of 20 with (HF)₃ · Et₃N in THF led to the desired diol 21 (38%). Yields were not optimised. The products 16–20 were purified by flash chromatography. This resulted in losing up to 30% of the products, on account to their low solubility in solvents allowing chromatography did not lead to improvements, and 21 was purified by repeated trituration with hexane, again entailing loss of material.

The sequence-isomeric U*[s]A*[s]U*[s]A* tetramer 26 was synthesized similarly to 21 (*Scheme 3*). Substitution of chloride 10 by the thiol derived from 13 gave the dinucleoside 22 (94%), substitution of chloride 15 by the thiol derived from 22 gave the trinucleoside 23 (>98%), and substitution of chloride 7 by the thiol derived from 23 gave the benzoylated tetranucleoside that was directly debenzoylated to the diamine 24 (28%). Detritylation of 24 gave the mono-alcohol 25 (60%) that was desilylated to the diol 26 (35%). Finally, 26 was deisopropylidenated by the action of aqueous CF₃CO₂H in CH₂Cl₂ to yield 52% of the fully deprotected tetranucleoside 27. Purification of the diamine 24 by chromatography on silica gel entailed loss of material. The mono-alcohol 25 was purified by trituration with MeOH, and the diol 26 and the polyol 27 by trituration with acetone.

¹H- and ¹³C-NMR data of **16**–**27** are listed in *Tables* 6–9 in the *Exper. Part.* In CDCl₃, the dimers **16** and **22** give rise to sharp signals, whereas the trimers **17** and **23** and especially the tetramers **18**–**21** and **24**–**26** give rise to strong line broadening due both to their poor solubility and to association. Therefore, we recorded spectra of solutions of the tetramers **20**, **21**, **24**, and **25** in (D₆)DMSO. In this solvent, the tetramers are completely solvated monoplexes, as evidenced by δ (H–N(3)) of 11.40–11.41 ppm and δ (H₂N–C(6)) of 6.68–7.32 ppm, values that are similar to those for H–N(3) of uridine mononucleosides (11.37–11.44 ppm [4][5]) and for H₂N–C(6) of adenosine mononucleosides (7.32–7.40 ppm [4][6]). The ¹H-NMR spectrum of **26** in CDCl₃ at 25° shows very broad lines, sharpened by lowering the temperature to 2°, but not sufficiently so as to detect couplings of less than 2 Hz. However, the resolution was sufficient to allow investigating the association by the analysis of DQF-COSY, TOCSY, and NOESY spectra (see below). The polyol **27** is insoluble in CDCl₃, and the NMR spectra were recorded in (D₆)DMSO. The NMR data compiled in *Tables* 6–9 agree

a) K₂CO₃, MeOH. *b*) Chloro compound, K₂CO₃, DMF; 67% of **16**; 42% of **17**; 44% of **18**. *c*) MeONa, MeOH; 65%. *d*) Cl₂CHCO₂H, Et₃SiH, CH₂Cl₂; 24%. *e*) (HF)₃·Et₃N, THF; 38%. TDS = (thexyl)(dimethyl)silyl, MMTr = (monomethoxy)trityl.

NHBz

N

ÓR

N=

N

13

AcS

a) K₂CO₃, MeOH. *b*) Chloro compound, K₂CO₃, DMF; 94% of **22**; >98% of **23**. *c*) MeONa, MeOH; 28% of **24**. *d*) Cl₂CHCO₂H, Et₃SiH, CH₂Cl₂; 60%. *e*) (HF)₃·Et₃N, THF; 35%. *f*) CF₃CO₂H, H₂O, CH₂Cl₂; 52%. TDS = (thexyl)(dimethyl)silyl, MMTr = (monomethoxy)trityl.

27

well with the proposed structures. Data that are relevant for the analysis of the association are discussed in the next chapter.

2. Association of the $A^{s}[JU^{s}]A^{s}[s]U^{s}$ and $U^{s}[A^{s}]U^{s}[A^{s}]A^{s}$ Tetranucleosides. The self-association of the $A^{s}[S]U^{s}[S]A^{s}[S]U^{s}$ tetramers **19–21** and of the $U^{s}[A^{s}]U^{s}[S]A^{s}[S]U^{s}[S]A^{s}$ tetramers **24–26** in CDCl₃ and in CDCl₃/(D₆)DMSO mixtures was investigated by ¹H-NMR spectroscopy. The ¹H-NMR spectra of solutions of these tetramers in CDCl₃ at 25° show broad signals, evidencing association kinetics on the NMR time-scale. Despite the broad signals, we could determine the concentration dependence of the chemical shifts for H–N(3) of both uracil units of **19**, **21**, and **25**, resulting in 'shift concentration curves' (SCCs; *cf.* [3]). The tetramers are less well soluble than the corresponding dimers, and this restricted the analysis of the concentration dependence to lower concentrations (up to 15 mM) for the mono-alcohols and the diols. The SCCs of **19** and **20** in CDCl₃/(D₆)DMSO 95:5 at ambient temperature, and of **24** and **25** in CDCl₃ at 50° were analysed numerically according the method of *Gutowsky* and *Saika* [7].

2.1. Association of the $A^{*}[s]U^{*}[s]A^{*}[s]U^{*}$ Tetranucleosides. H-N(3/a) and $H-N(3/b)^3$) of the dibenzamide **18** (15 mM solution in CDCl₃) that was not expected to form a cyclic duplex resonate at 10.20 and 9.73 ppm (*Table 1*), similarly as H-N(3)of the analogous U*[s]U* dimer (10.56 and 9.96 ppm [8]). These chemical shifts evidence an equilibrium between the monoplex and linear $U \cdot U$ duplexes, although a small contribution of linear and cyclic duplexes possessing Hoogsteen-type base pairing cannot be excluded. Debenzoylation of 18 to 19 led to a strong downfield shift of the H-N(3/a) and H-N(3/b) signals, now resonating at 13.03 and 12.38 ppm, and evidencing the formation of cyclic duplexes possessing Watson-Crick-type H-bonded base pairs. A comparison with $\delta(H-N(3/I))$ of the corresponding tritylated A*[s]U* dimer (13.02 ppm [3]) may suggest that the H-N(3/a) signal of **19** at 13.03 ppm corresponds to H-N(3/I), and the one of H-N(3/b) at 12.38 to H-N(3/III). Detritylation of **19** to **20** leads to an upfield shift of both H-N(3) signals to 11.75 ppm, revealing a preference for reverse Hoogsteen base pairing, as it was found for the corresponding $A^*[s]U^*$ dimer [3]. In agreement with this change of pairing mode, H-C(2) of **20** resonates upfield to H-C(2) of **19** (8.20/8.24 vs. 8.30/8.50 ppm). Reverse Hoogsteen-type base pairing appears to be favoured by an intramolecular Hbond of HOCH₂-C(6/I) to O-C(2'/I). The upfield shift for both H-N(3) of diol 21 (11.29 and 11.14 ppm) reveals the exclusive formation of reverse Hoogsteen base pairs.

Table 1. Chemical Shifts [ppm] of H-N(3) of the $A^*[s]U^*[s]A^*[s]U^*$ Tetramers **18–21** and the $U^*[s]A^*[s]U^*[s]A^*$ Tetramers **24–26** for 10–15 mM Solutions in CDCl₃ and at 25° (values in parenthesis at -20°)

	18	19	20	21	24	25	26
H-N(3/a) H-N(3/b)	10.20 9.73	13.03 12.38	11.75 11.75	11.29 11.14	(12.11) (12.03)	12.70 (12.86) 11.86 (12.06)	14.11 (H–N(3/IV) 13.03 (H–N(3/II)

³) The two H–N(3) signal of **18–21**, **24**, and **25** were not assigned to the individual uridine units. The more deshielded H–N(3) signal is labeled H–N(3/a) and the other one H–N(3/b).

The SCCs for the two H-N(3) signals of **19** in $CDCl_3$ are shown in *Fig. 2, a.* The SCC for H-N(3/a) and its downfield shift evidence the presence of cyclic duplexes already at a low concentration by the absence of a curvature below 10 mM and nearly constant chemical-shift values above 10 mM. The SCC for H-N(3/b) increases slightly from 12.33 to 12.40 ppm upon increasing the concentration from 7.5 to 32 mM; at concentrations below 7.5 mM, the H-N(3/b) signal is not visible. In contradistinction, the SCC for H-N(3/I) shows decreasing shift values, from 13.10 ppm at 2.2 mM to 12.94 ppm at 32 mM. This decrease suggests a further association of the cyclic duplexes with increasing concentration (*cf.* [8]).

Fig. 2. a) SCCs for H-N(3/a) and H-N(3/b) of **19** in CDCl₃ solution. b) Influence of the $(D_6)DMSO$ content upon the chemical shift of H-N(3/a) and H-N(3/b) of **19** and **20** in CDCl₃ solution.

The preference of diol **21** to form cyclic duplexes in CDCl₃ is evidenced by a slight increase of $\delta(H-N(3/a))$ (from 11.22 to 11.29 ppm) and of $\delta(H-N(3/b))$ (from 11.03 to 11.14 ppm) with increasing concentration (from 5.5 to 13.9 mM). Like the SCC of **19** (*Fig. 2, a*), the one of **21** in CDCl₃ (not shown) shows no curvature at low concentrations, preventing a quantitative analysis of the association.

Adding increasing amounts of (D_6) DMSO to CDCl₃ solutions of self-complementary dinucleosides shifts the monoplex \rightleftharpoons duplex equilibrium progressively in favour of the (solvated) monoplex [9]. Upon addition of 50% of (D₆)DMSO, δ (H-N(3/a)) and δ (H–N(3/b)) of **19** decrease from 13.70 to 10.70, and from 12.53 to 10.59 ppm, respectively. The lines parallel to the two branches of the curves depicting the solvent dependence of the chemical shift of H-N(3a and b) (Fig. 2,b) cross at a CDCl₃/ (D₆)DMSO ratio of ca. 9:1, suggesting complete solvation, *i.e.*, the presence exclusively of the monoplex at a (D_6) DMSO content of 10%. As H-N(3) of a reverse Hoogsteen base-paired cyclic duplex and H-N(3) of a completely solvated monoplex in (D_6) DMSO resonate at a similar field (*ca*. 11 ppm), one expects at best a weak solvent dependence upon adding increasing amounts of $(D_6)DMSO$ to solutions of 20 and 21 in CDCl₃. This was indeed observed. The curves depicting the solvent dependence for $\delta(H-N(3))$ for **20** (*Fig. 2,b*) show a weak increase upon adding 10% of $(D_6)DMSO$ $(\Delta\delta(H-N(3))=0.12$ and 0.04 ppm). Coalescence prevented the determination of $\delta(H-N(3))$ at a 2–7% content of (D₆)DMSO. Above a content of 10% (D₆)DMSO, we observed a steady decrease of δ (H–N(3) up to a 50% content of $(D_6)DMSO (\Delta\delta(H-N(3)) = 0.31 \text{ and } 0.18 \text{ ppm})$. This corresponds to the expected

shift change for the transition of a *Hoogsteen*-type base-paired duplex to a solvated monoplex. Both H-N(3) of **21** in $CDCl_3$ resonate as a single very broad singlet at 11.22 ppm. Similarly as for **19**, a steady if weak decrease of this chemical shift was observed upon adding increasing amounts of $(D_6)DMSO$ ($\Delta \delta = 0.14$ ppm after addition of 40% of $(D_6)DMSO$), also in agreement with the dissociation of a *Hoogsteen*-type base-paired duplex.

The above experiments show that the monomethoxytrityl ether 19 and the corresponding alcohol 20 form a monoplex \Rightarrow duplex equilibrium in CDCl₃/ (D₆)DMSO 95:5. This mixed solvent appeared well suited for the purpose of determining the association constants. The numerical analysis [7] of the SCCs depicted in Fig. 3 led to a similar value of ca. 10.8 ppm for the chemical shift of H-N(3/b) =H-N(3/III) of **19** and **20**, extrapolated to a concentration of 0 mm (*Table 2*). For H-N(3/a) = H-N(3/I) of **19** and **20**, there is a difference of 0.3 ppm between the $\delta(H-N(3/I), c=0 \text{ mM})$ values which may be at least partly due to the different substitution at C(6/I). A larger contribution of *Hoogsteen*-type H-bonded duplexes for **20** than for **19** is suggested by the upfield shift for H–N(3) of **20** ($\Delta\delta$ (H–N(3), $c = \infty$) \approx 0.4 ppm for both NH). The association constants $K_{\rm ass}$ calculated from δ (H–N(3/I) of **19** and **20** (310 and 251 M^{-1} , resp.) are larger than those calculated from $\delta(H-N(3/III))$ (126 and 115 M^{-1} , resp.), but the difference is within the large variance of the values. The SCCs for H-N(3/a) and H-N(3/b) of the diol **21** in $CDCl_3/(D_6)DMSO 95:5$ show a small and steady increase of the chemical shift upon increasing the concentration from 3.2 to 7.7 mM ($\Delta \delta \leq 0.06$ ppm), preventing numerical analysis. These differences evidence a large contribution of (reverse) Hoogsteen H-bonded cyclic duplexes in the association equilibrium of **21** (cf. [3]).

To further probe the association of these tetramers, we investigated the temperature dependence of the H-N(3) signals of the fully *O*-protected **19** (15.8 mM in CDCl₃; *Fig.* 4). At 40°, H-N(3/I) and H-N(3/III) resonate as broad *singlets* at 12.5 and

Fig. 3. SCCs for both H-N(3) of **19** and **20** in $CDCl_3/(D_6)DMSO$ 95:5

Table 2. Numerical Analysis of the SCCs of the $A^{s}[JU^{s}]A^{s}[JU^{s}]A^{s}[s]U^{s}]A^{s}$ Tetramers **19**, **20**, **24**, and **25** in Fig. 2, b, and Fig. 4: Calculated ¹H-NMR Chemical Shifts [ppm] of H-N(3) or of $H_2N-C(6)$ of the Monoplex (c=0 mM) and of the Cyclic Duplexes ($c=\infty$), and Calculated Association Constants K_{ass} [M^{-1}]

	19	20	25	24					
Solvent Temperature	CDCl ₃ /(D ₆)DMSO 95:5 25°	CDCl ₃ /(D ₆)DMSO 95:5 25°	CDCl ₃ 50°	$\begin{array}{c} \text{CDCl}_3\\ 50^\circ \end{array}$					
	H-N(3/a)	H-N(3/a)	$H - N(3/a)^{a})$	$H_2N-C(6/c)^b)$					
$\delta (c = 0 \text{ mM})$ $\delta (c = \infty)$ K_{ass}	$\begin{array}{c} 11.42 \pm 0.17 \\ 12.44 \pm 0.09 \\ 310 \pm 253 \end{array}$	$\begin{array}{c} 11.12 \pm 0.07 \\ 11.90 \pm 0.06 \\ 251 \pm 118 \end{array}$	$\begin{array}{c} 7.69 \pm 0.06 \\ 11.89 \pm 0.04 \\ 6523 \pm 1403 \end{array}$	$\begin{array}{c} 5.85 \pm 0.06 \\ 7.04 \pm 0.08 \\ 456 \pm 172 \end{array}$					
	H-N(3/b)	H-N(3/b)	$H-N(3/b)^a)$	$H_2N-C(6/d)$					
$\frac{\delta (c = 0 \text{ mm})}{\delta (c = \infty)}$ K_{ass}	$\begin{array}{c} 10.76 \pm 0.13 \\ 12.41 \pm 0.22 \\ 126 \pm 74 \end{array}$	$\begin{array}{c} 10.80 \pm 0.05 \\ 12.07 \pm 0.12 \\ 115 \pm 43 \end{array}$	$\begin{array}{c} 7.70 \pm 0.05 \\ 11.60 \pm 0.04 \\ 3630 \pm 479 \end{array}$	$\begin{array}{c} 5.85 \pm 0.37 \\ 7.07 \pm 0.14 \\ 259 \pm 333 \end{array}$					
^a) Including a value of 7.70 ppm for 0.0001 mм. ^b) Including a value of 5.85 ppm for 0.0001 mм.									

11.85 ppm, respectively. They coalesce and disappear at 0° , and reappear at -20° as two broad *singlets* at 14.05 and 13.7 ppm, respectively. At -40° , two rather sharp *singlets* at 14.15 and 13.75 ppm evidence a single cyclic duplex possessing *Watson*-*Crick*-type base pairs. The H–N(3) signals of the monoplex are expected at a somewhat lower field than those of H–N(3) of the monoplex at room temperature (7.7 ppm [3]), considering the expected downfield shift due to cooling to -40° . Five broad *singlets* integrating for 5 H appear between 7.9 and 8.5 ppm at temperatures below the coalescence temperature. They have to be assigned to the associated NH atoms of the H₂N–C(6/II and IV) groups of the cyclic duplex, and to H–N(3/I and III) and H–C(2/II and IV) of the monoplex, whereas H–C(2/II and IV) of the cyclic duplex resonate at -40° as sharp *singlets* at 8.72 and 8.47 ppm.

Fig. 4. Temperature dependence of the H-N(3) signals of 19 for a 15.8 mM solution in $CDCl_3$

For the mono-alcohol **20**, we expected Watson - Crick- and *Hoogsteen*-type basepaired duplexes. H–N(3/a) and H–N(3/b) of **20** resonate as two rather sharp *singlets* at 10.82 and 10.47 ppm at 50°, and at 20° as one broad *singlet* at 11.7 ppm. At – 10 to – 40°, coalescence was observed. The chemical shift of H–N(3/a and b) at 20° agrees well with an equilibrium of *Watson-Crick*- and *Hoogsteen*-type base-paired cyclic duplexes.

Unfortunately, solutions of **21** in CDCl₃ gave rise to broad signals both at 25° and 2°; no NOESY cross-peaks between NH and other H signals could be detected. The structure of the reverse *Hoogsteen* H-bonded cyclic duplex of **21** was modeled (AMBER* in Macromodel v. 6.0 [10]) by extending the structure of the cyclic duplex of the corresponding A*[s]U* dimer [3], and fixing the distances of all H-bonds and the torsion angles of the linking CH₂SCH₂ moieties. This led to a rather regular right-handed A helix with *ca.* seven residues per turn (*Fig. 5*). After releasing all constraints, the AMBER*-modeled structure showed large propeller and buckle twists that result from avoiding a close contact between O=C(4) of U and ROCH₂-C(8) of A. This may be an artifact, as suggested by *ab initio* calculation (*Spartan 2004: Hartree-Fock* calculation with the 3-21G basis set [11]) of a reverse *Hoogsteen* base pair of uracil with 8,9-dimethyladenine that suggests a binding interaction between O=C(4) of uridine and H₃C-C(8) of 8,9-dimethyladenine⁴). There is (on the basis of modeling), therefore, no reason to doubt the reverse *Hoogsteen* base pairing of **21**.

Fig. 5. *AMBER*-Modelled* (using constraints for the H-bond distances and the torsion angles of the CH₂SCH₂ linking units) *cyclic duplex of the diol* **21** *connected by reverse*-Hoogsteen *base pairing* (H-atoms of isopropylidene groups omitted for enhanced clarity; units of the complementary strand marked with a star)

⁴) C-H···O=C H-bonds in β-sheets of proteins were evidenced by ^{h3}J(C,C) scalar couplings [12]. Their calculated association enthalpy ΔH²⁹⁸ of -3 kcal/mol corresponds roughly to half the size of the association enthalpy of a N-H···O=C H-bond [13].

2.2. Association of the $U^{s}|A^{s}|U^{s}|A^{*}$ Tetranucleosides. The H-N(3) signals of the fully O-protected analogue 24 (10-15 mM in CDCl_3) could not be observed at 25° due to coalescence. They appear at -20° at 12.11 and 12.03 ppm (*Table 1*). The two H-N(3) of the mono-alcohol 25 resonate at -20° at 12.86 and 12.06 ppm, and at 25° at 12.70 and 11.86 ppm. At 25° , the two H-N(3) of the diol 26 resonate at 14.11 and 13.03 ppm revealing Watson – Crick-type H-bonded cyclic duplexes. The upfield shifts for the H–N(3) signals of 24 and 25 ($\Delta \delta = 1.2 - 2.2$ ppm) may be rationalized by an increasing contribution of *Hoogsteen*-type associated duplexes, or, similarly as it was observed for the corresponding U*[s]A* dimers [3], by an increasing contribution of linear duplexes and of the monoplex. 2D-NMR Experiments (see below) show that the more deshielded H-N(3/a) of 26 corresponds to H-N(3/IV), but do not settle the assignment of the H-N(3) signals of 24 and 25. The uncertainty stems from a comparison of the chemical shifts for H-N(3) of 24-26 with those for the corresponding U*[s]A* dimers (12.5 mM CDCl₃) where H-N(3/II) resonates at 11.1, 11.9, and 12.8 ppm, respectively, suggesting that the more shielded H-N(3/b) of 26 corresponds to H-N(3/IV).

The H–N(3) signals of the mono-alcohol **25** in CDCl₃ at 25° are very broad. At 50°, however, the signals are rather sharp and allow determination of the concentration dependence. The SCC for H–N(3/a) of **25** (*Fig. 6,a*) shows the characteristic shape denoting an equilibrium between monoplex and one or several cyclic duplexes, *i.e.*, a strong curvature below 10 mM and a plateau above 15 mM. A weaker curvature of the SCC for H–N(3/b) of **25** suggests the formation also of minor amounts of linear duplexes. Numerical analysis of the SCCs led to reliable results only upon including a value of 7.70 ppm/0.0001 mM (*cf.* [3][14]), resulting in K_{ass} values of 6523 ± 1403 and 3630 ± 479 M⁻¹ (*Table 2*). Assuming the same relative chemical shifts for H–N(3/II) and H–N(3/IV) of **25** as for **26** one may rationalize these results by an equilibrium between cyclic duplexes with all four units base-paired, and cyclic duplexes where only units III and IV pair. In such a partially paired duplex, H–N(3/a = IV) is completely involved in a base pair, and H–N(3/b = II) only partially so.

Fig. 6. a) SCCs for H-N(3/a) and H-N(3/b) of **25** in $CDCl_3$ at 50° . b) SCCs for $H_2N-C(6/a)$ and $H_2N-C(6/b)$ of **24** in $CDCl_3$ at 50° .

The temperature dependence of the ¹H-NMR spectra of **25** (12 mM in CDCl_3) between 22 and -40° (*Fig.* 7) evidences the predominant formation of a single

Watson-*Crick* base-paired cyclic duplex at -40° . At 22° , H-N(3/a = IV?) and H-N(3/b = II?) resonate as broad *singlets* at 12.70 and 11.86 ppm, whereas the H₂N-C(6) signals are hidden due to coalescence. Lowering the temperature to 10° led to a weak downfield shift for H-N(3/a = IV?) and H-N(3/b = II?) ($\Delta\delta$ = 0.19 and 0.26 ppm, resp.) and to the appearance of four NH₂ signals, *i.e.*, two signals at 9.54 and 9.46 ppm of associated H-N, and two signals at 7.55 and 6.55 ppm of free H-N. All these signals became sharper upon cooling to $-10^{\circ 5}$). While these six NH signals evidence a single, *Watson*-*Crick* base-paired cyclic duplex, additional very weak H-N(3) signals (at 11.8, 12.3, 12.55, and 13.2 ppm, -40°) suggest a small contribution of two other *Watson*-*Crick*-type base-paired cyclic duplexs.

Fig. 7. Temperature dependence of the H-N(3) and HN-C(6) signals of **25** between 9 and 13 ppm for a 12-mM solution in $CDCl_3$

A cyclic duplex of **25** (molecular mass 1439.73 g/mole) is further evidenced by the apparent molecular mass of 2850 ± 100 for a 10 mM solution in CH₂Cl₂, as determined by vapour pressure osmometry.

The H–N(3) signals of the fully *O*-protected **24** in CDCl₃ show coalescence at 25°. The signal is very broad at 50° and does not allow us to determine the concentration dependence of the chemical shift. For this reason, we followed the concentration dependence of the two H₂N–C(6) signals of the A(I and III) moieties at 50° which were only hidden between 6.72 and 6.77 ppm by the signals of the MeOC₆H₄ group (*Fig.* 6, *b*). In agreement with observations for adenosine-derived dimers [3], the two H₂N–C(6/c and d) signals (integrating for two H) were assigned to one H₂N–C(6) group each of the two adenosine moieties; they represent an average of H-bonded and free HN. Numerical analysis of the SCC for H₂N–C(6/d) led to a reliable result, with δ (H₂N–C(6), c = 0 mM) of 5.85±0.37 ppm and $K_{ass} = 259 \pm 333$ M⁻¹ (*Table 2*). Numerical analysis of the SCC for H₂N–C(6/c) also gave a reliable result upon

⁵) There is a weak influence of the temperature on the chemical shift for the associated NH upon cooling from 10 to -40° , *i.e.*, a weak downfield shift for H-N(3/a), H-N(3/b), and HN-C(6/c) ($\Delta \delta \leq 0.20$ ppm) and a weak upfield shift for HN-C(6/d) ($\Delta \delta = 0.13$ ppm). The chemical shift of the free NHs is hardly influenced by the temperature ($\Delta \delta \leq 0.03$ ppm).

including a value of 5.85 ppm/0.0001 mM, with $K_{ass} = 456 \pm 172 \text{ M}^{-1}$. These approximate values evidence a weak association of the fully *O*-protected **24**, similarly to the corresponding U*[s]A* dimer ($K_{ass} = 227 \text{ M}^{-1}$ [3]), although the values are based on signals representing an average of H-bonded and free H of the NH₂ groups (*cf.* [8]).

The H-N(3) signals of the diol **26** in CDCl₃ at 27° appear at 14.11 and 13.03 ppm, independently of the concentration (2-10 mM). This evidences a strong association $(K_{ass} \ge 10^4 \text{ M}^{-1})$. The broad H-N(3) signals of **26** disappear in the noise upon progressive dilution of a 12 mm solution in CDCl₃/(D₆)DMSO 95:5 preventing a numerical determination of K_{ass} . The strong association suggested analyzing the structure of the duplex, and this required a detailed analysis of the ¹H-NMR spectra.

2.2.1. Qualitative Analysis of the ¹H-NMR Data of the Diol **26** in $CDCl_3$ at 2°. At 2°, the resolution of the ¹H-NMR spectra of a 5 mM solution of **26** in CDCl₃ was sufficient to allow investigating the associated structure by analysis of DQF-COSY, TOCSY, and NOESY spectra. An unambiguous assignment of the signals was only feasible by a combined analysis of these spectra.

The signals of the U units II and IV were unambiguously assigned by TOCSY crosspeaks between H–N(3) and H–C(5), intra-units ROESY cross-peaks between H–C(5) and CH₂–C(6), CH₂–C(6) and H–C(1'), and H–C(1') and H–C(4'), and TOCSY cross-peaks between H–C(1') and H–C(2'), and between H–C(4') and H₂C(5'). Similarly, the CH₂–C(8) signals of the A units I and III were correlated by NOESY and DQF-COSY cross-peaks with the corresponding H₂C(5') signals. The H–C(2) signals were assigned on the basis of weak NOESY cross-peaks with the corresponding H–C(3') signals.

Only the $H_2N-C(6)$ signals could not be assigned by intra-unit cross-peaks. They resonate as two pairs of *singlets* at 9.15/7.47 and 7.97/5.66 ppm, the non-equivalence of the H-atoms of both NH₂ groups evidencing the formation of a stable cyclic duplex connected by four base pairs. The pairs of *singlets* were assigned by DQF-COSY and TOCSY cross-peaks. The individual signals were assigned with the help of inter-unit NOESY cross-peaks of H-N(3/IV) and H-N(3/II). H-N(3/IV) shows cross-peaks with the NH₂ signals at 9.15/7.47 ppm and the H-C(2/I) signal at 8.38 ppm, and H-N(3/II) shows cross-peaks with the other NH₂ group at 7.97/5.66 ppm and the H-C(2/III) signal at 7.94 ppm. In addition, both H-N(3) signals show exchange-NOESY cross-peaks with both OH signals at 5.77 and 4.68 ppm, and with HDO at 1.80 ppm. The cross-peaks with H-C(2) evidence *Watson-Crick* or reverse *Watson-Crick* base pairing between units I and IV, and between units II and III. As expected from the strong downfield shift of both H-N(3) signals, there is no evidence for *Hoogsteen*-type base pairing (no cross-peaks between H-N(3/IV) and $CH_2-C(8/I)$ nor between H-N(3/II) and $CH_2-C(8/III)$).

HO-C(5'/IV) resonates as a *doublet* at 4.69 ppm. The downfield shift and the large coupling of 9.7 Hz is consistent with a rather persistent bifurcated H-bond to O=C(2/IV) and O-C(4'/IV) (*cf.* [3] and refs. cit. therein). $HOCH_2$ -C(8/I) resonates as a *doublet* at 5.77 ppm. The large J(H,OH) value of 11.5 Hz evidences that the OH group is forming a H-bond, with H–O antiperiplanar to one C–H of the CH₂ group. This excludes an intramolecular H-bond to N(7/I), as this would require H–O to be in the σ -plane of the adenine moiety (torsion angle H–C–O–H ±120°), while an intramolecular H-bond to O–C(2'/I) agrees well with this coupling.

The combined analysis of the DQF-COSY, TOCSY, and NOESY spectra allowed us to unambiguously assign all ¹H-NMR signals of **26** in CDCl₃ at 2° (see *Table 8* in the *Exper. Part*). There are several unexpected chemical shifts that must be due to anisotropy effects in the cyclic duplex. One notes a strong upfield shift of H–C(5/II) (4.77 ppm; $\Delta \delta \approx 1$ ppm), an upfield shift for H–C(2/III) (7.94 ppm; $\Delta \delta \approx 0.4$ ppm), a strong upfield shift for H–C(1/IV) (5.23 ppm; $\Delta \delta > 0.6$ ppm), a downfield shift for H–C(2'/II) (5.49 ppm; $\Delta \delta \approx 0.3$ ppm), upfield shifts for H–C(2'/I) (5.05 ppm; $\Delta \delta >$ 0.45 ppm) and H–C(2'/III) (5.20 ppm; $\Delta \delta > 0.3$ ppm), a downfield shift for H–C(3'/ I) (5.41 ppm; $\Delta \delta \approx 0.3$ ppm), a downfield shift for H–C(4'/I) (4.65 ppm; $\Delta \delta \approx$ 0.3 ppm), and an upfield shift for H–C(4'/IV) (3.90 ppm; $\Delta \delta \approx 0.4$ ppm)⁶). Large shift differences (0.47–0.86 ppm) are found for the geminal H-atoms of CH₂–C(8/III), CH₂–C(6/II), CH₂–C(6/IV), H₂C(5'/I), H₂C(5'/III), and H₂C(5'/IV), evidencing a strongly anisotropic environment. The geminal H-atoms of CH₂–C(8/I) and H₂C(5'/ II), however, show only a weak $\Delta \delta$ of 0.11–0.13 ppm.

The syn-orientation of all nucleobases in the duplex of **26** is evidenced by NOESY cross-peaks between H-C(1') and $CH_2-C(6 \text{ or } 8)$, and corroborated by NOESY cross-peaks between H-C(3') and H-C(2) of the adenosine units. Hence, the upfield shift observed for H-C(2'/I) and H-C(2'/III) must indeed be due to anisotropy effects and does not denote an *anti*-orientation of the adenosine unit. A northern (*N*) conformation is evidenced for units I–III by DQF-COSY cross-peaks between H-C(3') and H-C(4'), and by the absence of DQF-COSY cross-peaks between H-C(1') and H-C(2'); line broadening prevents the exact determination of the J(1',2')/J(3',4') ratio. Unit IV, however, shows a preference for a southern (*S*) conformation, evidenced by DQF-COSY cross-peaks between H-C(2'/IV). It is likely that this conformation is induced by the intramolecular bifurcated H-bond of HO-C(5'/IV) to O=C(2/IV) and O-C(4'/IV). NOESY Cross-peaks between the signals of $HOCH_2-C(8/I)$ and O-C(1'/I) and H-C(2'/I) confirm the intramolecular H-bond to O-C(2'/I).

A gt- or tg-orientation of the sulfanyl substituent of units I–III is evidenced by a large coupling of 10.2–10.8 Hz between H–C(4') and the more strongly deshielded H_a –C(5'). The also expected small coupling of H–C(4') with the less strongly deshielded H_b –C(5') was not resolved. The gt- or tg-orientation of the sulfanyl group is corroborated by strong DQF-COSY cross-peaks between the H–C(4') and H_a –C(5') signals, and the absence of cross-peaks between H–C(4') and H_b –C(5'). As expected for an ap orientation of H_a –C(5') and H–C(4'), and a gauche orientation of H_b –C(5') and H–C(4'), the NOESY spectrum shows weaker cross-peaks between the signals of H_a –C(5') and H–C(4') than between those of H_b –C(5') and H–C(4') (volume ratio ca. 1:1.5–2.0). However, both the H_a –C(5') and H_b –C(5') signals show cross-peaks with the H–C(3') signal of similar intensity (volume ratio ca. 1:1). This is only compatible with a gt-conformation. Thus, the more strongly deshielded H_a –C(5')

⁶) Some of these unexpected shifts may be rationalized on the basis of the calculated duplexes **26A** – **26C** (see below). The upfield shifts of H-C(5/II) and H-C(2/III) agree with their localisation in the shielding cone above A(I) and U(IV), respectively, whereas a downfield shift of H-C(2'/II) is expected from its position in the deshielding cone near the plane through U(II).

I–III) corresponds to H_{Re} , in agreement with the analogous assignment for $H_a-C(5'/I)$ of the corresponding U*[s]A* dimer [3]. The intramolecular H-bond of HO–C(5'/IV) requires a gg-orientation. This conformation could not be corroborated by DQF-COSY and NOESY cross-peaks due to overlapping H–C(4'/IV) and $H_a-C(5'/IV)$ signals.

In the absence of any coupling constants, the deduction of the approximate torsion angle about the $H_2C-C(6 \text{ or } 8)$ bond of the sulfanyl moiety has to rely on the relative NOE intensities of the two CH₂. In U(IV), both HC-C(6/IV) show a strong intraresidual NOE to H-C(1'/IV). This indicates that, in U(IV), both HC-C(6) point towards H-C(1'), and that the torsion angle N(1)-C(6)-CH₂-S is $180 \pm 60^{\circ}$. With this general orientation it was possible to individually assign the two H₂C-C(6/IV); the one showing a NOE with H-C(2'/IV) was assigned to H_{Si}. For A(III) and U(II), a specific assignment was only possible *via* a cyclic process using the structures calculated with pseudo-atoms for H₂C-C(8 or 6) to deduce the assignment that is congruent with the observed NOEs.

2.2.2. AMBER* Modeling of the Cyclic Duplex of 26. A rough calculation of the solution structure of 26 at 2° in CDCl₃ by simulated annealing with NMR-derived distance and torsion-angle restraints (programme XPLORE-NIH, version 2-0-4 [15]) led to 64 Watson-Crick base-paired structures showing neither NOE-distance (>0.1 Å) nor torsion-angle violations $(>5^{\circ})$ [16]. The 14 structures lowest in energy had in common the syn-orientation of all nucleobases and the tg-orientation of all sulfanyl groups, but suffered from inefficient base pairing (evidenced by O ... HN and NH…N distances of 1.51−1.84 and 2.02−2.81 Å, resp.), unfavourable propeller and buckle twists (up to 50°), free OH groups, and especially from poor base stacking (distance of 4.6-7.2 Å between the centre base pairs and of 3.5-5.6 Å between the border base-pairs). The conformation of the $H_2C(5')-S-CH_2$ linker between units I and II was similar to that between units II and III, but different from that between units III and IV. The structure showing the weakest propeller and buckle twists was selected for optimization with the programme AMBER* implemented in Macromodel v. 6 [10]. First, constraints were set for Watson - Crick base pairing, for the formation of the intramolecular H-bonds of the OH groups, and for a distance of 3.4 Å between the base pairs. In one calculation, the conformation of the $H_2C(5')-S-CH_2$ linkers was maintained, and in another calculation the conformation of the linker between units III and IV was brought in line with that of the other linkers. After this calculation, all constraints were released for the final optimisation. This led to the duplex stuctures **26A** and **26B** (5 kcal/mol lower in energy than **26A**), differing essentially in the conformation of the linker between units III and IV (Fig. 8). The front views of 26A and 26B show more or less parallel border base pairs and strongly inclined centre base pairs evidenced by roll angles⁷) of 4.9, 5.1, and 15.0° for 26A, and of twice 5.7 and 15.2° for **26B**. Thus, only the border base pairs show base stacking (distance 3.20 - 3.25 Å). The strong inclination of the centre base pairs leading to a bent helix axis is presumably the result of backbone strain in these cyclic duplexes. The top views of 26A and 26B

⁷) Determined by measuring the angle between the two main planes through $C(2_U)$, $C(4_U)$, $C(6_U)$, $C(3_A)$, $C(6_A)$, and $C(8_A)$ of the two base pairs.

reveal a mean twist angle of $ca. 60^{\circ}$, *i.e.*, six units per turn in a right-handed A helix possessing a central hole the size of a phenyl ring.

Fig. 8. AMBER*-Modelled cyclic duplexes 26A and 26B connected by Watson-Crick base pairing (Hatoms of isopropylidene groups omitted for enhanced clarity; units of the complementary strand marked with a star)

The structures of the duplexes **26A** and **26B** were analyzed in more detail (*Fig. 8* and *Table 3*). The strands are connected by four *Watson – Crick* base pairs (characterized by NH…N and NH…O distances of 1.75 - 1.76 Å) that show no or only weak

H…X Bond		H…X Distar	ice [Å]	
		26A	26B	26C
$\overline{N(3)-H\cdots N(1)}$		1.75, 1.78 ^a)	1.75	1.92, 2.05 ^a)
$C(4) = O \cdots HN - C(6)$		1.78, 1.71 ^a)	1.76 - 1.77	2.16, 1.98 ^a)
$OH \cdots O(2'/I)$		2.00	1.98	
$OH \cdots O = C(2/IV)$		1.71	1.70	
$OH \cdots O(5'/IV)$		2.33	2.43	
Torsion Angle	Short notation	Torsion angle	[°] ^b)	
O(4')-C(1')-N(9)-C(4), unit I	χ/Ι	52.3	51.9	59.5
O(4')-C(1')-N(1)-C(2), unit II	χ/II	50.0	53.3	77.1
O(4')-C(1')-N(9)-C(4), unit III	χ/III	52.7	45.1	67.5
O(4')-C(1')-N(1)-C(2), unit IV	χ/IV	48.1	54.7	36.0
O(4')-C(4')-C(5')-S, unit I	η_1/I	90.2	90.7	90.4
O(4')-C(4')-C(5')-S, unit II	η_1/II	80.2	78.7	90.1
O(4')-C(4')-C(5')-S, unit III	η_1 /III	64.5	77.3	76.0
O(4')-C(4')-C(5')-O, unit IV	η_1/IV	- 59.2	-64.0	^c)
C(3')-C(4')-C(5')-S, unit I	η_2/I	- 152.3	-151.7	-150.1
C(3')-C(4')-C(5')-S, unit II	η_2/II	-160.2	-161.6	-150.0
C(3')-C(4')-C(5')-S, unit III	η_2 /III	-177.4	-163.1	-164.7
C(3')-C(4')-C(5')-O, unit IV	η_2 /IV	59.5	54.8	^c)
$C(4')-C(5')-S-CH_2$, unit I	θ/I	-59.7	-61.1	-78.7
$C(4')-C(5')-S-CH_2$, unit II	θ/II	-66.0	-68.9	-92.5
$C(4')-C(5')-S-CH_2$, unit III	θ /III	-147.2	-70.8	-177.1
$C(5')-S-CH_2-C(6)$, unit I	ι/I	- 59.8	-61.7	-52.5
$C(5')-S-CH_2-C(8)$, unit II	ι/II	- 59.2	-60.5	-62.0
$C(5')-S-CH_2-C(6)$, unit III	ı/III	64.2	-47.7	62.7
$S-CH_2-C(6)-N(1)$, unit I	κ/I	-61.2	-61.8	-73.4
$S-CH_2-C(8)-N(9)$, unit II	к/II	-59.0	-59.0	-61.8
$S-CH_2-C(6)-N(1)$, unit III	к/III	- 162.6	-60.7	- 149.9

 Table 3. H-Bond Distances [Å] and Selected Torsion Angles [°] of the Cyclic Duplexes 26A, 26B, and 26C (obtained by AMBER* and XPLOR-NIH calculations, resp.).

^a) First value: terminal units, second value: central units. ^b) Mean value of both strands ($\Delta \not\leq \leq 0.4^{\circ}$). ^c) Not determined (programme allows free rotation of the CH₂OH group).

propeller and buckle twists. All nucleobases adopt a *syn*-conformation ($\chi/I-IV 45-55^{\circ}$). The sulfanyl moieties of units I–III adopt a distorted *gt*-conformation. The distortion decreases from unit I ($\eta_1/I \ ca. 90^{\circ}$) to units II ($\eta_1/I \ ca. 80^{\circ}$) and to units III ($\eta_1/II \ ca. 80^{\circ}$) and to units III ($\eta_1/II \ ca. 90^{\circ}$) for **26B** and 64.5° for **26A**; see *Table 3* for the definition of the angles). The C(4')–C(5')–S–CH₂–C(6 or 8)–N(1 or 9) fragment of all linkers adopt a $g^-g^-g^-$ (torsion angles θ , ι , and κ) conformation, except for the linker between units II and III of **26A** which adopts a tg^+t -conformation. In agreement with the experimental data, the furanose rings of units II and III of **26A** and **26B** adopt a northern ³*E*-conformation, while unit I adopts a southern ²*E*-conformation, with a calculated J(1,2) > 7.0 Hz that is not in agreement with the experimental data. In the AMBER* calculation, the southern conformation is a consequence of the intramolecular H-bond to O–C(2'),

while *Maruzen* modeling suggests that this intramolecular H-bond is also compatible with a northern conformation⁸).

HO-C(5'/IV) of **26A** and **26B** forms an intramolecular H-bond to O=C(2/IV) rather than a bifurcated H-bond to O-C(4'/IV), as indicated by H···O distances of 1.71 and 1.70 vs. 2.33 and 2.43 Å, respectively (*Table 3*), whereas bifurcated (if strongly asymmetric) H-bonds are found in crystal structures of closely related uridine monomers (H···O distances of 1.71–1.83 and 2.15–2.37 Å [17–19]). This H-bond leads to a gg-orientation of the CH₂OH side chain and an E_1 furanose conformation, as also found in the X-ray structures.

Finally, the inter-proton distances of the minimized structures **26A** and **26B** were compared with the NOE-derived distance constraints. For both structures **26A** and **26B**, minimized with AMBER*, NOE back-calculations showed a number of large discrepancies (-1.2 Å < d < +1.0 Å) between the experimental NOE constraints and the corresponding distances in **26A** (13 violations $\ge 0.5 \text{ Å}$) and **26B** (24 violations $\ge 0.5 \text{ Å}$). Most of these violations involved the sequential distances across the sulfaryl linkers, and the relative intra-residual distances between the $CH_2-C(6/8)$ and H-C(1').

2.2.3. Calculation of the Solution Structure of 26 in $CDCl_3$ at 2° by Simulated Annealing with NMR-Derived Distance and Torsion-Angle Restraints. A total of 288 cross-peaks from the NOESY, $t_m = 300 \text{ ms}$, spectrum of 26 in CDCl₃ at 2° were integrated, and the volumes converted into distance restraints using the two-spin approximation (for details, see *Exper. Part*). The torsion angles C(3')-C(4')-C(5')-Swere restricted to $180 \pm 20^{\circ}$ based on vicinal couplings between H-C(4') and H_{Re} – (C5'). Because the downfield shift of H–N(3) clearly indicated the presence of four base pairs, Watson-Crick base pairing was enforced by additional distance restraints across the H-bonds. Starting with a loose and extended antiparallel duplex, a total of 97 structures were calculated according to the torsion-angle-simulated annealing molecular-dynamics protocol of Stein et al. with the programme XPLOR-NIH [15]. A small subset of five NOEs that involved the terminal OH H-atoms (NOEs between units A(I) and U(IV)) was consistently violated in all initial structure calculations. Because of possible contributions of chemical exchange between the OH H-atoms, these NOEs were omitted from the final calculations. It is conceivable that these weak NOEs originate from end-to-end association of duplexes mediated through H-bonds involving the terminal OH groups, but, in view of the sparse data available, this question has to remain open.

Since qualitative analysis of the NMR data did not allow us to definitely decide between Watson - Crick (WC) and reverse Watson - Crick (rWC) base pairing, all four C_2 -symmetric patterns of base pairing with WC or rWC base pairs (WC-WC-WC, WC-rWC-rWC, rWC-WC-rWC, rWC-rWC-rWC) were calculated separately. However, all three variations with rWC base pairs generated only structures with severe violations of experimentally derived distance or dihedral angle restraints,

⁸⁾ AM1, but not AMBER* modeling suggested also a conformation in which the C–O bond of the OH is in the π -plane of the adenine moiety, and O–H is parallel to the C(8)=N(7) bond. This conformer agrees with J(H,OH) = 11.5 Hz, but not with the NOESY cross-peaks between the signal of $HOCH_2$ –C(8/I), and of both H–C(1'/I) and H–C(2'/I) signals.

whereas, for the duplex with four WC base pairs, 65 out of the 97 calculated structures did not show any violations of the distance or torsion-angle contraints. A bundle of all accepted structures, aligned based on the S-atoms, is shown in Fig. 9, a, and the structure **26C** with the lowest calculated energy in the bundle is depicted in Fig. 9, b-d, from different view angles.

Fig. 9. Structure of the Watson – Crick base-paired cyclic duplex **26C** as calculated with the NMR-derived contraints for **26** in CDCl₃ at 2°. a) Bundle of all 67 accepted structures (rmsd = 0.057 Å). b) Single (lowest calculated energy) structure from the bundle in a view perpendicular to the C_2 axis. c) View showing the strong roll leading to a pronounced helix curvature. The purple spheres are the centres of each base pair (midpoint of the line connecting the two exocyclic CH₂-C(6/8)) of opposite bases. d) Top view of the helix showing the twists between the base pairs. The purple cylinders connect the two exocyclic CH₂-C(6/8) of opposite bases.

With such a short duplex of only four base pairs, a standard geometrical analysis of the helix parameters is impossible, because the helix axis is not well-defined. Hence, the following description has to remain qualitative. In CDCl₃, **26C** forms an antiparallel duplex with four *Watson-Crick* base pairs in a right-handed, strongly bent helix fragment (*Fig. 9,b*). The estimated twist angles are 60° between the terminal and 45° between the centre base pairs (*Fig. 9,d*)⁹).

The most striking feature of **26C** is the very pronounced roll of the base pairs, in particular between the two centre ones (roll angle of 39.5°)⁷), whereas the roll angle between the border base pairs is *ca*. 22° (*Fig.* 9,*d*). This large and unidirectional roll leads to a strong curvature of the helix axis. A polygon drawn through the centers of the base pairs (midpoints between the two $CH_2-C(8/6)$) does not approximate a straight line (as, *e.g.*, in B-type DNA) but exhibits a curvature with a radius of *ca*. 10 Å (see *Fig.* 9,*c*). Although all neighbouring base pairs approach each other to *Van der Waals* distance at one point, the large roll between the central base pairs prevents efficient base stacking and opens a cleft in the overall shape of the duplex that is best seen from the CPK model shown in *Fig.* 10. The strong curvature of the helix axis of **26C** predicts that duplex formation of the homologous self-complementary hexamers and octamers is not feasible due to disturbing steric interactions of the terminal A units.

Fig. 10. CPK Representation of the Watson-Crick base-paired cyclic duplex 26C showing the pronounced cleft in the overall shape

The structure of **26C** was analyzed in more details (*Table 3*). It forms *Watson*– *Crick* base pairs with N(3)H…N(1) and C(4)=O…HN–C(6) distances of 1.92 and 2.15 Å for the border base pairs, and 2.05 and 1.98 Å, respectively, for the centre base pairs. The structure adopted by **26C** is similar to the one of the AMBER* modeled **26A**, possessing a *syn*-orientation of the nucleobases, a *gt*-orientation of the sulfanyl substituents, a $g^-g^-g^-$ (torsion angles θ , ι , and κ) conformation of the $C(4')-C(5')-S-CH_2-C(6 \text{ or } 8)-N(1 \text{ or } 9)$ fragment of the linkers between units I

⁹) In its geometrical definition, the twist as seen in this figure is not identical to the twist of a standard helix (linear helix axis) as defined for DNA and RNA.

and II, and units II and III, and a tg^+t -conformation of this linking fragment between units III and IV. Thus, relatively small differences of the angles χ , and $\eta - \kappa$ are mainly responsible for the different puckering of **26A** and **26C**. In agreement with the experimental J(1',2') and J(3',4') values, the furanose rings of units I–III adopt a northern (${}^{3}H_{2}$ or 3E) and those of unit IV an ${}^{O}E$ conformation.

The diastereotopic HOC $H_2(5'/IV)$ and HOC $H_2-C(8/I)$ cannot be assigned by the SPARKY programme [20], due to overlapping H–C(4'/IV) and H_a–C(5'/IV) signals, and to poor NOESY interactions of HOC H_2 –C(8/I). Hence, XPLOR-NIH calculation cannot predict the conformation of the CH₂OH groups established by the large J(H,OH) values (see above), but leads to freely rotating CH₂OH groups.

The broadening of all ¹H-NMR signals of **26** in CDCl₃ at 2° excludes the presence of a single conformer, but may indicate an equilibrium of the easily interconvertible duplexes **26A** and **26C** (but with intramolecular H-bonds of the OH groups) and/or aggregation of the cyclic duplexes. Indeed, J(5',OH) = 9.7 Hz suggests a *ca.* 90% persistent intramolecular H-bond and would allow the aggregation of cyclic duplexes by an intermolecular H-bond of HOCH₂C(5'/IV) to OCH₂-C(8/I). This could rationalize the five weak ROESY cross-peaks between the units A(I) and U(IV) that consistently violated all initial duplex structures of the XPLOR-NIH calculation.

2.2.4. No Association of the Polyol **27** in $(D_6)DMSO$. The completely deprotected polyol **27** proved insoluble in CDCl₃ and CDCl₃/ $(D_6)DMSO$ 9 : 1. In pure $(D_6)DMSO$, H–N(3) and H₂N–C(6) resonate at 11.34/11.31 and 7.29 ppm, respectively. These values are characteristic for U and A monomers in $(D_6)DMSO$ [4–6] and evidence a completely solvated monoplex of **27** in $(D_6)DMSO$.

Conclusions. – The analysis of the sequence-isomeric self-complementary tetramers confirms the results obtained from the investigation of the corresponding dimers. In the $U^{*}[s]A^{*}[s]U^{*}[s]A^{*}$ and $U^{*}[s]A^{*}$ series, the diol forms exclusively a *Watson – Crick* base-paired cyclic duplex, with the tetramer showing the structure of an incipient A-helix, but possessing a bent helix axis, and, in the $A^{*}[s]U^{*}[s]A^{*}[s]U^{*}$ and $A^{*}[s]U^{*}$ series, the diols form a reverse *Hoogsteen* base-paired cyclic duplex. The OH groups at the terminal units strongly enhance the formation of cyclic duplexes.

We thank the *Swiss National Science Foundation, F. Hoffmann-La Roche AG*, Basel, and *Syngenta AG*, Basel, for generous support. *B. J.* and *Z. J.* thank the ETH Zürich for financial support (TH Project TH-17/02).

Experimental Part

General. See [3].

6-(*Chloromethyl*)-5'-O-[*dimethyl*(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneuridine (**7**). Under N₂, a soln. of **6** [3] (700 mg, 1.53 mmol) in CH₂Cl₂ (5 ml) at 0° was treated with DMAP (460 mg, 3.83 mmol) and MsCl (238 µl, 3.06 mmol), stirred for 1 h at 0 and for 2 h at 23°, diluted with CH₂Cl₂ (50 ml), and washed with sat. NH₄Cl soln., sat. NaHCO₃ soln., and brine. The combined org. phases were dried (MgSO₄) and evaporated. FC (AcOEt/cyclohexane 2:3) gave **7** (540 mg, 74%). R_f (AcOEt/cyclohexane 1:1) 0.50. [α]₂₅²⁵ = -5.9 (c = 1.0, CHCl₃). IR (CHCl₃): 3387w, 3189w (br.), 2961m, 2869w, 1700s, 1626w, 1461m, 1447m, 1379m, 1268w, 1256w, 1157w, 1131w, 1084m, 980w, 876m, 835m. ¹H-NMR (300 MHz, CDCl₃): see *Table* 4; additionally, 1.60 (*sept.*, J = 6.9, Me₂CH); 1.55, 1.31 (2s, Me₂CO₂); 0.86 (d, J = 6.9, Me_2 CH); 0.83 (s, Me₂CSi); -0.07, -0.06 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 5; additionally, 113.55 (s, Me₂CO₂); 34.08 (d, Me_2 CH); 27.24, 25.34 (2q, Me_2 CO₂); 25.26 (s,

	7	9	10	12	14	15
H-C(2)	_	_	_	8.81	8.63	8.74
H-N(3) or $HN-C(6)$	9.16	9.35	10.45	8.94	9.53	9.16
H-C(5)	5.82	5.73	5.76	-	_	-
$CH_a - C(6 \text{ or } 8)$	4.44	4.55	4.41	4.92	4.98 - 4.85	4.85
$CH_b - C(6 \text{ or } 8)$	4.33	4.55	4.32	4.86	4.98 - 4.85	4.85
H-C(1')	5.82	5.81	5.83	6.32	6.24	6.24
H-C(2')	5.26	5.25	5.25	5.83	5.63	5.74
H-C(3')	4.86 - 4.77	4.86	4.86	5.13	4.98	5.06
H-C(4')	4.20 - 4.10	4.14	4.12	4.30	4.19	4.27
$H_a - C(5')$	3.84-3.71	3.23	3.21	3.75	3.10	3.16
$H_b - C(5')$	3.84-3.71	3.23	3.21	3.62	2.97	3.04
$J(CH_a, CH_b)$	13.2	a)	12.9	15.3	a)	a)
J(1',2')	< 1.5	1.5	< 1.5	2.4	2.1	1.5
J(2',3')	6.0	6.3	6.3	6.3	6.3	6.3
J(3',4')	a)	3.9	3.6	3.6	3.6	3.3
J(4',5'a)	a)	7.2	7.2	6.0	7.5	7.2
J(4',5'b)	a)	7.2	7.2	5.7	6.9	6.9
<i>J</i> (5'a,5'b)	a)	a)	a)	11.9	13.8	13.8
^a) Not assigned.						

Table 4. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the U* and A* Monomers 7, 9, 10, 12, 14, and 15 in CDCl₃

Table 5. Selected ¹³C-NMR Chemical Shifts [ppm] of the U* and A* Monomers 7, 9, 10, 12, 14, and 15

	7	9	10	12	14	15
Solvent	CDCl ₃	(D ₆)DMSO	CDCl ₃	CDCl ₃	$CDCl_3$	CDCl ₃
C(2)	150.57 ^a)	151.57	150.95ª)	152.58	152.46	153.24
C(4)	162.94	163.48	163.31	149.77	149.19	150.05
C(5)	104.62	101.67	105.11	122.26	121.70	122.49
C(6)	150.42 ^a)	155.59	150.76 ^a)	152.52	152.26	152.39
C(8)	-	-	-	150.06	154.81	150.05
$CH_2 - C(6 \text{ or } 8)$	41.09	60.03	41.29	36.73	57.55	36.64
C(1')	91.67	91.33	92.26	90.42	89.92	90.43
C(2')	84.20	85.16	85.23	83.24	84.04	84.09
C(3')	81.91	84.43	84.48	81.59	83.86	83.95
C(4')	89.62	87.97	88.69	87.65	86.61	86.97
C(5')	63.83	31.69	31.58	62.83	31.26	31.30
2) .						

^a) Assignment may be interchanged.

 $\begin{array}{l} Me_2CSi); 20.38, 20.22 \; (2q, \ Me_2CH); 18.54, 18.49 \; (2q, \ Me_2CSi); 3.23 \; (q, \ Me_2Si). \; HR-ESI-MS: 499.1823 \\ (34), 498.1888 \; (24), 497.1839 \; (100, \ [M+Na]^+, \ C_{21}H_{35}ClN_2NaO_6Si^+; calc. \; 497.1851). \end{array}$

5'-S-Acetyl-6-(hydroxymethyl)-2',3'-O-isopropylidene-5-thiouridine (**9**). A soln. of **8** [3] (150 mg, 0.23 mmol) in CH₂Cl₂ (3 ml) under N₂ was treated with Cl₂CHCO₂H (0.3 ml, 3.63 mmol) and Et₃SiH (75 μ l, 0.47 mmol), and stirred for 15 min at 23°. The mixture was poured into sat. NaHCO₃ soln. After extraction with CH₂Cl₂, the combined org. phases were washed with brine, dried (MgSO₄), and evaporated. The residue was triturated with cyclohexane. Filtration gave **9** (63 mg, 73%). Colourless powder. *R*_f (AcOEt) 0.55. M.p. 202.6–203.7°. [*a*]_D²⁵ = +10.7 (*c* = 1.0, CHCl₃). IR (ATR): 3355*w*, 3195*w*,

2618

3001w, 2987w, 2934w, 1686s, 1664s, 1617w, 1463w, 1421w, 1395m, 1385m, 1308w, 1275w, 1254w, 1238w, 1211w, 1157w, 1138w, 1101s, 1064w, 1042s, 1029m, 1003m, 983w, 972w, 952w, 865m, 855s, 831m, 805m. ¹H-NMR (300 MHz, CDCl₃): see *Table 4*; additionally, 3.12 (t, J = 6.0, OH); 2.34 (s, AcS); 1.52, 1.33 (2s, Me₂C). ¹³C-NMR (75 MHz, (D₆)DMSO): see *Table 5*; additionally, 195.36 (s, SC=O); 113.34 (s, Me₂C); 31.17 (q, MeC=O); 27.61, 25.61 (2q, Me_2 C). HR-MALDI-MS: 396.0923 (16), 395.0886 (100, [M + Na]⁺, C₁₅H₂₀N₂NaO₇S⁺; calc. 395.0883), 315.0641 (17), 273.1280 (15, MMTr⁺, C₂₀H₁₇O⁺; calc. 273.1279). Anal. calc. for C₁₅H₂₀N₂O₇S (372.40): C 48.38, H 5.41, N 7.52; found: C 48.42, H 5.56, N 7.41.

5'-S-Acetyl-6-(chloromethyl)-2',3'-O-isopropylidene-5'-thiouridine (**10**). Under N₂, a soln. of **9** (44 mg, 0.12 mmol) in CH₂Cl₂ (1 ml) at 0° was treated with DMAP (36 mg, 0.29 mmol) and MsCl (20 µl, 0.24 mmol), stirred for 10 min at 0 and for 2 h at 23°, and evaporated. A soln. of the residue in AcOEt was washed with sat. NH₄Cl soln. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. FC (AcOEt/cyclohexane 1:1) gave **10** (42 mg, 91%). Colourless foam. R_f (AcOEt/cyclohexane 4:1) 0.57. $[a]_D^{25} = +0.5$ (c = 1.0, CHCl₃). IR (CHCl₃): 3386w, 3189w (br.), 3027w, 3014w, 2939w, 1698s (br.), 1627w, 1460w, 1447w, 1383m, 1272w, 1229w (br.), 1157w, 1136w, 1092m, 1063m, 982w, 909w, 875w, 836w. ¹H-NMR (300 MHz, CDCl₃): see *Table 4*; additionally, 2.30 (s, AcS); 1.49, 1.30 (2s, Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see *Table 5*; additionally, 195.05 (s, SC=O); 114.09 (s, Me₂CO₂); 30.80 (q, MeC=O); 27.26, 25.34 (2q, Me₂C). HR-MALDI-MS: 415.0511 (12), 413.0539 (38, [M + Na]⁺, C₁₅H₁₉ClN₂NaO₆S⁺; calc. 413.0545), 379.0932 (31, [M – Cl + H + Na]⁺, C₁₅H₂₀N₂NaO₆S⁺; calc. 379.0940), 333.033 (17), 274.0426 (15), 273.1280 (100, MMTr⁺, C₂₀H₁₇O⁺; calc. 273.1279).

N⁶-Benzoyl-8-(chloromethyl)-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine (**12**). Under N₂, a soln. of **11** [3] (1.000 g, 1.76 mmol) in CH₂Cl₂ (5 ml) was cooled to -10° , treated with DMAP (640 mg, 4.57 mmol) and MsCl (330 µl, 4.2 mmol), stirred for 10 min at 0 and for 3 h at 23°, diluted with CH₂Cl₂ (50 ml), and washed with sat. NH₄Cl soln., sat. NaHCO₃ soln., and brine. The combined org. phases were dried (MgSO₄) and evaporated. FC (AcOEt/cyclohexane 1:10 \rightarrow 1:1) gave **12** (0.69 g, 61%). *R*₁ (AcOEt/cyclohexane 1:1) 0.47. [*a*]_D⁵ = -18.3 (*c* = 1.0, CHCl₃). IR (CHCl₃): 3408*w*, 3014*m*, 1709*m*, 1613*s*, 1589*m*, 1463*m*, 1360*m*, 1268*m*, 1089*s*. ¹H-NMR (300 MHz, CDCl₃): see *Table* 4; additionally, 8.00 (*d*, *J* = 7.8, 2 arom. H); 7.62 – 7.49 (*m*, 3 arom. H); 1.64, 1.42 (2*s*, Me₂CO₂); 1.57 (*sept.*, *J* = 6.9, Me₂CH); 0.84 (*d*, *J* = 6.9, Me₂CH); 0.79, 0.78 (2*s*, Me₂CSi); -0.004, -0.014 (2*s*, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 5; additionally, 164.94 (*s*, C=O); 133.57 (*s*); 133.15 (*d*); 129.06 (2*d*); 128.22 (2*d*); 114.66 (*s*, Me₂CO₂); 34.25 (*d*, Me₂CH); 27.43, 25.63 (2*q*, Me₂CO₂); 25.47 (*s*, Me₂CSi); 20.46 (*q*, Me₂CH); 18.65 (*q*, Me₂CSi); -3.29 (*q*, Me₂Si). HR-MALDI-MS: 624.2381 (50, [*M* + Na]⁺, C₂₉H₄₀CIN₅NaO₅Si⁺; calc. 624.2385), 590.2764 (100, [*M* – Cl + H + Na]⁺, C₂₉H₄₁N₅NaO₅Si⁺; calc. 590.2775).

5'-S-Acetyl-N⁶-benzoyl-8-(hydroxymethyl)-2',3'-O-isopropylidene-5'-thioadenosine (**14**). Under N₂, a soln. of **13** [3] (100 mg, 0.13 mmol) in CH₂Cl₂ (2 ml) was treated with Cl₂CHCO₂H (0.2 ml, 2.4 mmol) and Et₃SiH (50 µl, 0.31 mmol) and stirred for 15 min at 23°. The mixture was poured into sat. NaHCO₃ soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH 100 : $0 \rightarrow 95$: 5) gave **14** (62 mg, 96%). Foam. $R_{\rm f}$ (AcOEt) 0.28. $[a]_{\rm D}^{25} =$ -13.2 (c = 1.0, CHCl₃). IR (CHCl₃): 3405w, 3030w, 2999m, 2940w, 1703s (br.), 1614s, 1590m, 1527w, 1480s, 1460m, 1427m, 1376m, 1356m, 1266m (br.), 1158m, 1134m, 1093s. ¹H-NMR (300 MHz, CDCl₃): see *Table* 4; additionally, 7.95 (d, J = 7.5, 2 arom. H); 7.48 (br. t, J = 7.5, 1 arom. H); 7.38 (d, J = 7.8, 2 arom. H); 6.05 (br. s, OH); 2.26 (s, AcS); 1.26, 1.37 (2s, Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 5; additionally, 194.64 (s, SC=O); 165.42 (s, NC=O); 133.57 (s); 132.89 (d); 128.79 (2d); 128.10 (2d); 114.67 (s, Me₂C); 30.73 (q, MeC=O); 27.24, 25.51 (2q, Me₂C). HR-MALDI-MS: 523.1439 (27), 522.1412 (100, [M + Na]⁺, C₂₃H₂₅N₅NaO₆S⁺; calc. 522.1418), 500.1589 (16, [M + H]⁺, C₂₃H₂₆N₅O₆S⁺; calc. 500.1604).

5'-S-Acetyl-N⁶-benzoyl-8-(chloromethyl)-2',3'-O-isopropylidene-5'-thioadenosine (**15**). Under N₂, a soln. of **14** (62 mg, 0.12 mmol) in CH₂Cl₂ (1 ml) was cooled to 0°, treated with DMAP (37 mg, 0.31 mmol) and MsCl (20 μ l, 0.24 mmol), and stirred for 1 h at 0 and for 3 h at 23°. The mixture was poured into sat. NH₄Cl soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH 100:0 \rightarrow 95:5) gave **15** (62 mg, 96%). Colourless foam. *R*_f (AcOEt/cyclohexane 4:1) 0.46. [*a*]₂₅²⁵ = +1.1 (*c* = 1.0, CHCl₃). IR (CHCl₃): 3406*w*, 3014*m*, 2936*w*, 1707*s* (br.), 1613*s*, 1589*m*, 1525*w*, 1478*m*, 1463*m*, 1436*m*, 1424*m*, 1358*m*, 1329*m*, 1268*m*, 1249*m*, 1157*w*, 1134*m*, 1093*s*, 909*w*, 865*w*. ¹H-NMR (300 MHz, CDCl₃): see Table 4; additionally, 7.95 (*d*,

 $J = 7.8, 2 \text{ arom. H}); 7.54 (br. t, J = 7.5, 1 \text{ arom. H}); 7.45 (d, J = 7.8, 2 \text{ arom. H}); 2.27 (s, AcS); 1.56, 1.36 (2s, Me_2C). ¹³C-NMR (75 MHz, CDCl_3): see$ *Table 5* $; additionally, 194.58 (s, SC=O); 164.91 (s, NC=O); 133.67 (s); 133.07 (d); 129.05 (2d); 128.13 (2d); 114.70 (s, Me_2C); 30.74 (q, MeC=O); 27.31, 25.54 (2q, Me_2C). HR-MALDI-MS: 540.1073 (23, <math>[M + Na]^+$, $C_{23}H_{24}CIN_5NaO_5S^+$; calc. 540.1079), 506.1481 (100, $[M - Cl + H + Na]^+$, $C_{23}H_{25}N_5NaO_5S^+$; calc. 506.1469).

 $5'-S-Acetyl-N^6-benzoyl-2', 3'-O-isopropylidene-5'-thioadenosine-8-methyl-(8^l \rightarrow 5'-S)-2', 3'-O-isopro-2', 5'-S-2', 5'-5', 5'-5', 5'-5', 5'-5', 5'-5', 5'-5', 5'-5'$ pylidene-6-{[(4-methoxyphenyl)diphenylmethoxy]methyl}-5'-thiouridine (16). Under N_2 , a soln. of 8 (600 mg, 0.93 mmol) in O₂-free MeOH (2 ml) was treated with K₂CO₃ (400 mg, 2.79 mmol) and stirred for 10 min at 23°. Sat. NH_4Cl soln. (20 ml) was added, and the mixture was extracted with CH_2Cl_2 . The combined org. phases were washed with brine, dried ($MgSO_4$), and evaporated. Under N₂, a soln. of the residue (500 mg, 0.83 mmol) in O₂-free DMF (2 ml) was treated with 15 (430 mg, 0.83 mmol) and K_2CO_3 (340 mg, 2.5 mmol), and stirred for 2 h at 23°. The mixture was poured into sat. NH₄Cl soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. FC (AcOEt/cyclohexane $3:2 \rightarrow 1:0$) yielded **16** (606 mg, 67%). $R_{\rm f}$ (AcOEt/cyclohexane 7:3) 0.25. $[\alpha]_{25}^{25} = -19.7$ (c = 1.0, CHCl₃). IR (CHCl₃): 3395w (br.), 3200w (br.), 3015m, 2937w, 1697s (br.), 1612m, 1589w, 1510w, 1457w, 1423w, 1384m, 1356w, 1326w, 1299w, 1259m (br.), 1092m, 1062m. ¹H-NMR (300 MHz, CDCl₃): see *Table* 6; additionally, 10.81 (br. s, H–N(3/I)); 9.56 (s, HN–C(6/II)); 7.92 (d, J = 8.4, 2 arom. H); 7.49 - 7.24 (m, 15 arom. H); 6.79 (d, J = 9.0, 2 arom. H); 3.81 (s, MeO); 2.29 (s, J = 10.14); 3.81 (s, MeO); 3.AcS); 1.57, 1.36, 1.32, 1.16 (4s, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see Table 7; additionally, 194.66 (s, SC=O); 165.84 (s, NHC=O); 159.20, 143.36, 143.26 (3s); 134.38 (br. s, 2 C); 132.91 (d); 130.42 (2d); 128.78-128.33 (several d); 127.70 (2d); 114.58, 113.80 (2s, 2 Me₂C); 113.64 (2d); 88.33 (s, Ph₂C); 55.54 (q, MeO); 30.74 (q, MeC=O); 27.33, 27.21, 25.56, 25.38 (4q, 2 Me₂C). HR-MALDI-MS: 1108.3442 (15), 1107.3444 (29), 1106.3413 (43, $[M + Na]^+$, $C_{56}H_{57}N_7NaO_{12}S_2^+$; calc. 1106.3404), 273.1280 (100, MMTr⁺, C_{56}H_{57}N_7NaO_{12}S_2^+; calc. 1106.3404), 273.1280 (100, MMTR^+), 273.1280 (100, MMTR^+), 273.1280 (100, MMTR^+), 273.1280 (100, MMTR^+), 280 (100, MMTR $C_{20}H_{17}O^+$; calc. 273.1279).

idene-5'-thioadenosine-8-methyl- $(8^1 \rightarrow 5'-S)-2', 3'-O$ -isopropylidene-6-{[(4-methoxyphenyl)diphenylmethoxy [methyl]-5'-thiouridine (17). Under N_2 , a soln. of 16 (300 mg, 0.28 mmol) in O_2 -free MeOH (2 ml) was treated with K2CO3 (115 mg, 0.83 mmol), and stirred for 10 min at 23°. After dilution with sat. NH4Cl soln. (20 ml) under N₂, the mixture was extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. Under N₂, a soln. of the residue (270 mg, 0.26 mmol) in O₂free DMF (2 ml) was treated with 10 (100 mg, 0.26 mmol) and K₂CO₃ (106 mg, 0.77 mmol), and stirred for 2 h at 23°. The mixture was poured into a sat. NH₄Cl soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/acetone $1:0 \rightarrow 1:1$) gave 17 (150 mg, 42%). $R_{\rm f}$ (AcOEt/cyclohexane 4:1) 0.20. $[a]_{25}^{25} = -39.1$ (c = 1.0, CHCl₃). IR (CHCl₃): 3390w (br.), 3197w (br.), 3015m, 2936w, 1696s (br.), 1612m, 1588w, 1510w, 1457m, 1422w, 1384m, 1354w, 1326w, 1267w, 1254w (br.), 1157w, 1091m, 1070m, 1035w. ¹H-NMR (300 MHz, CDCl₃): see Table 6; additionally, 10.62, 10.39 (2 br. s, H-N(3/I), H-N(3/III)); 10.01 (s, HN-C(6/II); 8.04 (dd, J=6.6, 3.3, 2 arom. H); 7.47 – 7.24 (m, 15 arom. H); 6.81 (d, J = 8.7, 2 arom. H); 3.79 (s, MeO); 2.29 (s, AcS); 1.61, 1.51, 1.38, 1.32 (2 Me), 1.15 (5s, 3 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see Table 7; additionally, 194.55 (s, SC=O); 165.45 (s, NHC=O); 158.81, 142.97 (2 C), 134.05, 133.28 (4s); 132.52 (d); 130.15 (2d); 128.49-128.04 (several d); 127.38 (2d); 114.48, 113.68, 113.55 (3s, 3 Me₂C); 113.36 (2d); 88.10 (s, Ph₂C); 55.36 (q, MeO); 30.68 (q, MeC=O); 27.27 (2 C), 27.16, 25.43, 25.38 (2 C) (4q, 3 Me₂C). HR-MALDI-MS: 1421.423 (16), 1420.419 (54), 1419.417 (97), 1418.420 (100, $[M + Na]^+$, $C_{69}H_{73}NaN_9O_{17}S_3^+$; calc. 1418.418).

 N^6 -Benzoyl-5'-O-[dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-5'-thiouridine-6-methyl-($6^1 \rightarrow 5'$ -S)- N^6 -benzoyl-2',3'-O-isopropylidene-5'-thioadenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-6-[[(4-methoxyphenyl)diphenylmethoxy]methyl]-5'-thiouridine (**18**). Under N₂, a soln. of **17** (150 mg, 0.11 mmol) in O₂-free MeOH (2 ml) was treated with K₂CO₃ (60 mg, 0.43 mmol) and stirred for 10 min at 23°. After dilution with sat. NH₄Cl soln. (20 ml) under N₂, the mixture was extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. Under N₂, a soln. of the residue (145 mg) in O₂-free DMF (2.5 ml) was treated with **12** (70 mg, 0.11 mmol) and K₂CO₃ (60 mg, 0.43 mmol), and stirred for 2 h at 23°. The mixture was poured into a sat. NH₄Cl soln., and extracted with CH₂Cl₂. The combined org. phases

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Solvent	16 ^a) CDCl ₃	17 ^b) CDCl ₃	18°) CDCl ₃	19 ^d) CDCl ₃	20 ^e) (D ₆)DMSO	21 ^f) (D ₆)DMSO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Adenosine unit IV						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2/IV)			8.70 ^g)	8.50 ^g)	8.12 ^g)	8.11 ^g)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 - C(8/IV)$			4.18-3.95	4.13/4.00 ^h)	4.13/4.09 ^h)	4.16-3.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(1'/IV)			6.32	6.37	6.22	6.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2'/IV)			5.86	5.81	5.68	5.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3'/IV)			5.15 - 5.06	5.11	5.05 ⁱ)	5.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(4'/IV)			4.42-4.36	4.32	4.27	4.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H - C(5'/IV)			3.67/3.57	3.58/3.47	3.62 - 3.45	3.40 - 3.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J(H_{\rm H},H_{\rm H}/{\rm IV})$			^m)	14.7	14.5	^m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(1',2'/IV)			2.1	1.8	2.1	2.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(2' 3'/IV)			60	63	63	63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(3' 4'/IV)			m)	42	3.0	3.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I(4' 5'/IV)			60/63	7 2/6 3	7.0/7.0	m)
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	$\frac{J(+,5/1)}{U(+,5/1)}$			0.0/0.5	7.2/0.5	7.0/7.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Uridine unit III		5.00	5 05 5 70	5 7 0i)	5.60	5 (0
$\begin{array}{c} \mathrm{CH}_2-\mathrm{C}(6/\mathrm{III}) & 3.385.37 & 3.52/3.56 & 5.469.3.88 & 5.62-3.45 & 5.57-3.40 \\ \mathrm{H}-\mathrm{C}(2/\mathrm{III}) & 5.75 & 5.85-5.70 & 5.70 & 5.74^{\mathrm{k}} & 5.73^{\mathrm{h}} \\ \mathrm{H}-\mathrm{C}(2/\mathrm{III}) & 5.22 & 5.22-5.15 & 5.18 & 5.17 & 5.16 \\ \mathrm{H}-\mathrm{C}(3/\mathrm{III}) & 4.82 & 5.02-4.94 & 4.85^{\mathrm{k}} & 4.745^{\mathrm{l}} & 4.76^{\mathrm{l}} \\ \mathrm{H}-\mathrm{C}(3/\mathrm{III}) & 3.96 & 4.28-4.21 & 4.12-3.90 & 4.14-4.05 & 4.06 \\ 2\mathrm{H}-\mathrm{C}(5/\mathrm{III}) & 3.21/3.16 & 2.92-2.72 & 3.03-2.72 & 2.85-2.81 & 2.90-2.67 \\ J(\mathrm{H}_{*}\mathrm{H}_{*}/\mathrm{III}) & 15.0 & 14.5 & 14.7 & ^{\mathrm{m}} \\ J(1',2/\mathrm{III}) & 6.3 & ^{\mathrm{m}} & 6.3 & 6.2 & 6.3 \\ J(3',4'/\mathrm{III}) & 6.3 & ^{\mathrm{m}} & 6.3 & 6.2 & 6.3 \\ J(3',4'/\mathrm{III}) & 6.6/7.2 & ^{\mathrm{m}} & ^{\mathrm{m}} & ^{\mathrm{m}} \\ \mathrm{H}-\mathrm{C}(2/\mathrm{II}) & 8.75 & 8.74 & 8.71^{\mathrm{k}} & 8.33^{\mathrm{k}} & 8.15^{\mathrm{s}} & 8.14^{\mathrm{s}} \\ \mathrm{CH}_2-\mathrm{C}(8/\mathrm{II}) & 3.67/3.49 & 3.90-3.65 & 4.18-3.95 & 4.11/4.00^{\mathrm{h}} & 4.07/4.01^{\mathrm{h}} & 4.16-3.97 \\ \mathrm{H}-\mathrm{C}(2'/\mathrm{II}) & 5.82 & 5.62 & 5.85-5.70 & 5.96 & 5.78 & 5.67 \\ \mathrm{H}-\mathrm{C}(2'/\mathrm{II}) & 5.82 & 5.62 & 5.85-5.70 & 5.96 & 5.78 & 5.67 \\ \mathrm{H}-\mathrm{C}(3'/\mathrm{II}) & 5.06 & 5.21 & 5.15-5.06 & 5.11 & 5.03^{\mathrm{i}} & 5.03 \\ \mathrm{H}-\mathrm{C}(3'/\mathrm{II}) & 3.19/3.07 & 2.84-2.72 & 2.92-2.72 & 3.03-2.72 & 2.85-2.81 & 2.90-2.67 \\ J(\mathrm{H}_{*}\mathrm{H}_{*}/\mathrm{II}) & 12.3 & ^{\mathrm{m}} & ^{\mathrm{m}} & 14.7 & 14.5 & ^{\mathrm{m}} \\ J(1'2'/\mathrm{II}) & 2.1 & <1.5 & <1.5 & 1.5 & 1.7 & 1.8 \\ J(2'3'/\mathrm{II}) & 6.3 & 6.0 & ^{\mathrm{m}} & 6.3 & 6.2 & 6.3 \\ J(3'4'/\mathrm{II}) & 3.0 & 3.9 & ^{\mathrm{m}} & 3.0 & 3.3 & 3.0 \\ J(3'4'/\mathrm{II}) & 3.0 & 3.9 & ^{\mathrm{m}} & 3.0 & 3.3 & 3.0 \\ J(3'4'/\mathrm{II}) & 3.0 & 3.9 & ^{\mathrm{m}} & 3.0 & 3.3 & 3.0 \\ J(3'4'/\mathrm{II}) & 3.0 & 3.9 & ^{\mathrm{m}} & 5.70 & 5.73^{\mathrm{s}} & 5.61 \\ \mathrm{H}-\mathrm{C}(5'/\mathrm{II}) & 5.39 & 5.44 & 5.85-5.70 & 5.35^{\mathrm{i}} & 5.63 & 5.62 \\ \mathrm{CH}_2-\mathrm{C}(6/\mathrm{I}) & 4.06/4.00 & 4.16-4.02 & 4.18-3.95 & 4.12-3.90 & 4.36/4.32 & 4.38-4.28 \\ \mathrm{H}-\mathrm{C}(1'/\mathrm{I}) & 5.39 & 5.53 & 5.85-5.70 & 5.73^{\mathrm{s}} & 5.71^{\mathrm{h}} \\ \mathrm{H}-\mathrm{C}(2'/\mathrm{I}) & 4.81 & 4.91 & 5.02-4.94 & 5.18 & 5.17 & 5.16 \\ \mathrm{H}-\mathrm{C}(2'/\mathrm{I}) & 4.81 & 4.91 & 5.02-4.94 & 5.18 & 5.17 & 5.16 \\ \mathrm{H}-\mathrm{C}(3'/\mathrm{I}) & 4.68$	H = C(5/III)		5.09	5.85-5.70	5.72°	5.69	5.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 - C(6/III)$		3.58/3.37	3.52/3.36	3.46/3.38	3.62 - 3.45	3.55 - 3.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H - C(1/III)		5.75	5.85-5.70	5.70	5.74×)	5./3")
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2/III)		5.22	5.22-5.15	5.18	5.17	5.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3/III)		4.82	5.02-4.94	4.85*)	4.745')	4.761)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H - C(4'/III)		3.96	4.28-4.21	4.12-3.90	4.14-4.05	4.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H - C(5/III)		3.21/3.16	2.92-2.72	3.03-2.72	2.85-2.81	2.90-2.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J(H_a, H_b/III)$		15.0	14.5	14.7	^m)	^m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J(1',2'/\Pi I)$		< 1.5	^m)	< 1.5	< 1.5	< 1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(2',3'/111)		6.3	^m)	6.3	6.2	6.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(3',4'/III)		3.9	^m)	3.3	3.7	< 1.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	J(4',5'/III)		6.6/7.2	^m)	^m)	^m)	^m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Adenosine unit II						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2/II)	8.75	8.74	8.71 ^g)	8.33 ^g)	8.15 ^g)	8.14 ^g)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 - C(8/II)$	3.67/3.49	3.90 - 3.65	4.18-3.95	4.11/4.00 ^h)	4.07/4.01 ^h)	4.16-3.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(1'/II)	6.16	6.22	6.22	6.32	6.25	6.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2'/II)	5.82	5.62	5.85 - 5.70	5.96	5.78	5.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3'/II)	5.06	5.21	5.15 - 5.06	5.11	5.03 ⁱ)	5.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(4'/II)	4.28	4.41	4.28-4.21	4.21	4.14-4.05	4.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H-C(5'/II)	3.19/3.07	2.84 - 2.72	2.92 - 2.72	3.03 - 2.72	2.85 - 2.81	2.90 - 2.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$J(H_a,H_b/II)$	12.3	^m)	^m)	14.7	14.5	^m)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J(1',2'/II)	2.1	< 1.5	< 1.5	1.5	1.7	1.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J(2',3'/II)	6.3	6.0	^m)	6.3	6.2	6.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J(3',4'/II)	3.0	3.9	^m)	3.0	3.3	3.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J(4',5'/II)	7.5/6.9	6.3/6.3	^m)	6.6/6.6	^m)	^m)
$ \begin{array}{ccccccc} H-C(5/I) & 5.39 & 5.44 & 5.85-5.70 & 5.35^{i}) & 5.63 & 5.62 \\ CH_2-C(6/I) & 4.06/4.00 & 4.16-4.02 & 4.18-3.95 & 4.12-3.90 & 4.36/4.32 & 4.38-4.28 \\ H-C(1'/I) & 5.39 & 5.53 & 5.85-5.70 & 5.70 & 5.73^{k}) & 5.71^{h}) \\ H-C(2'/I) & 4.81 & 4.91 & 5.02-4.94 & 5.18 & 5.17 & 5.16 \\ H-C(3'/I) & 4.68 & 4.53 & 4.68-4.60 & 4.82^{k}) & 4.740^{l}) & 4.72^{i}) \\ \end{array} $	Uridine unit I			,		,	,
$\begin{array}{ccccc} H & C(3/1) & 5.39 & 5.44 & 5.65 & 5.16 & 5.65 & 5.16 & 5.65 & 5.75 &$	H = C(5/I)	5 39	5 44	585 - 570	5 35 ⁱ)	5.63	5.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_{-}C(6/I)$	4 06/4 00	416 - 402	4 18 - 3 95	412 - 300	4 36/4 32	4 38 - 4 28
$H = C(11)$ 3.55 5.55 $5.55 = 5.70$ 5.75 5.71 5.71 $H = C(2' I)$ 4.81 4.91 $5.02 = 4.94$ 5.18 5.17 5.16 $H = C(3' I)$ 4.68 4.53 $4.68 = 4.60$ 4.82^k 4.740^l 4.72^i	$H_{-C(1'/I)}$	5 30	5 53	5 85 5 70	-1.12 - 3.90 5 70	5 73k)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H = C(1/1) H = C(2'/1)	J.J.J 4 81	3.33 A 01	5.02 4.04	5.70	5.75)	5.16
11 - (511) 1.00 1.55 $1.00 - 1.00$ 1.02 1.740 1.72	H = C(2/I)	4.01	4.51	1.68 1.60	(182^{k})	$\frac{3.17}{4.740^{1}}$	J.10 4 72 ⁱ)
H = C(4/I) 3.99 4.14 = 4.04 4.18 = 4.11 4.12 = 3.90 4.14 = 4.05 4.06	H = C(4'/I)	3.00	4 14 - 4 04	4.03 - 4.00 4.18 - 4.11	412 - 390	4 14 - 4 05	4.06

Table 6. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the A*[s]U* Dimer 16,
the U*[s]A*[s]U* Trimer 17, and the A*[s]U*[s]A*[s]U* Tetramers 18-21

Tuble 0 (cont.)										
Solvent	16 ^a) CDCl ₃	17 ^b) CDCl ₃	18 °) CDCl ₃	19 ^d) CDCl ₃	20 ^e) (D ₆)DMSO	21 ^f) (D ₆)DMSO				
2 H-C(5'/I)	2.82 - 2.65	2.84 - 2.72	2.92 - 2.72	3.03-2.72	2.87/2.74	2.90-2.67				
$J(H_a,H_b/I)$	14.7	^m)	^m)	^m)	14.8	^m)				
J(1',2'/I)	1.8	< 2	^m)	< 1.5	< 1.5	< 1.5				
J(2',3'/I)	6.3	6.0	^m)	6.3	6.2	6.3				
J(3',4'/I)	3.9	4.2	^m)	3.3	3.7	< 1.5				
J(4',5'/I)	8.1/3.9	^m)	^m)	^m)	7.7/6.4	^m)				

^{a)} J(5'a,5'b/II) = 13.8 Hz. ^{b)} Broad signals for H–C(5/III), CH₂–C(8/II), and all H-atoms of unit I. J(5'a,5'b/III) = 13.5 Hz. ^{c)} Broad signals. J(5'a,5'b/IV) = 12.6 Hz. ^{d)}. Broad signals for CH₂–C(8/II). J(5'a,5'b/IV) = 10.5 Hz. ^{e)} J(5'a,5'b/I) = 13.7, $J(H_a,OH/I) = 6.0$, $J(H_b,OH/I) = 5.1$ Hz. ^{f)} Assignments based on a HSQC and a HMBC spectrum. ^{g)} -¹) Assignments may be interchanged. ^{m)} Not assigned.

were washed with brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 98:2:1 \rightarrow 90:10:1) gave **18** (90 mg, 44%). $R_{\rm f}$ (CH₂Cl₂/MeOH 95:5) 0.38. $[a]_{\rm D}^{25} = -44.9$ (c = 1.0, CHCl₃). IR (CHCl₃): 3396w (br.), 3204w (br.), 3015m, 2959w, 2933w, 2869w, 1698s (br.), 1612s, 1589m, 1511w, 1458m, 1423m, 1384m, 1357m, 1330w, 1263m, 1243m, 1157w, 1089s (br.). ¹H-NMR (300 MHz, CDCl₃): see *Table* 6; additionally, 10.2, 9.73 (2 br. s, H–N(3/I), H–N(3III)); 9.55 (s, HN–C(6/II), HN–C(6/IV)); 8.02–7.92 (m, 4 arom. H); 7.53–7.24 (m, 18 arom. H); 6.82 (d, J = 9.0, 2 arom. H); 3.79 (s, MeO); 1.60 (2 Me), 1.46, 1.39 (2 Me), 1.33, 1.27, 1.16 (6s, 4 Me₂C); 1.50–1.40 (m, Me₂CH); 0.82 (d, J = 6.9, Me_2 CH); 0.78, 0.77 (2s, Me₂CSi); -0.03, -0.04 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 7; additionally, 166.10, 165.86 (2s, 2 NHC=O); 159.24, 143.38, 143.30 (3s); 134.35 (2s); 134.30 (s); 132.84, 132.72 (2d); 130.55 (2d); 128.86–128.34 (several d); 127.67 (2d); 114.79, 114.32, 114.06, 113.92 (4s, 4 Me₂C); 113.65 (2d); 88.45 (s, Ph₂C); 55.50 (q, MeO); 34.28 (d, Me₂CH); 27.41 (br. q, 4 C), 25.64 (q), 25.53 (br. q, 3 C) (4 Me_2 C); 25.53 (s, Me₂CSi); 20.49 (q, Me_2 CH); 18.67 (q, Me_2 CSi); -3.25 (q, Me₂Si). HR-MALDI-MS: 1943.687 (68), 1942.684 (100), 1941.682 (80, [M + Na]⁺, C₉₆H₁₁₀N₁₄NaO₂₁S₃Si⁺; calc. 1941.683).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-($8^{1} \rightarrow 5'$ -S)-2',3'-O-isopropylidene-5'-thiouridine-6-methyl- $(6^1 \rightarrow 5'-S)-2',3'$ -O-isopropylidene-5'-thioadenosine-8 $methyl-(8^{1} \rightarrow 5'-S)-2',3'-O-isopropylidene-6-{[(4-methoxyphenyl)diphenylmethoxy]methyl}-5'-thiouri$ dine (19). A soln. of 18 (90 mg, 47 µmol) in MeOH (2 ml) was treated with MeONa (25 mg, 0.47 mmol) and stirred for 12 h at 23°. The mixture was poured into sat. NH₄Cl soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. FC (AcOEt/acetone/ NH₄OH 100:0:1 \rightarrow 50:50:1) gave **19** (52 mg, 65%). $R_{\rm f}$ (CH₂Cl₂/MeOH 92:5) 0.55. $[\alpha]_{\rm D}^{25} = -97.9$ (c =1.0, CHCl₃). IR (CHCl₃): 3314w, 3200w, 1698s, 1641m, 1510w, 1459w, 1441w, 1375m, 1330w, 1299w, 1208w, 1157m, 1092s. ¹H-NMR (300 MHz, CDCl₃): see Table 7; additionally, 13.03, 12.38 (2 br. s, H-N(3/ I), H-N(3/III)); 7.66 (br. s, NH₂); 7.48-7.28 (m, 12 arom. H, NH₂); 6.85 (d, J=8.7, 2 arom. H); 3.80 (s, MeO); 1.62, 1.59, 1.47, 1.42, 1.40, 1.39, 1.28, 1.23 (8s, 4 Me₂C); 1.53 (sept. J = 6.9, Me₂CH); 0.81 (d, J = 6.9, Me₂CH); 0.76, 0.75 (2s, Me₂CSi); -0.03, -0.06 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see Table 7; additionally, 158.86, 143.18, 142.99, 134.05 (4s); 130.33 (2d); 128.19 (4d); 128.04 (4d); 127.35 (2d); 113.55, 113.47 (br., 3 C) (2s, 4 Me₂C); 113.36 (2d); 88.27 (s, Ph₂C); 55.33 (q, MeO); 34.27 (d, Me₂CH); 27.34, 27.28 (2 C), 27.18, 25.72, 25.59, 25.28 (2 C) (6q, 4 Me₂C); 25.28 (s, Me₂CSi); 20.40 (q, Me₂CH); 18.58 (q, *Me*₂CSi); - 3.29 (q, Me₂Si). HR-MALDI-MS: 1735.634 (62), 1734.631 (96), 1733.629 (100, [*M* + Na]⁺; $C_{82}H_{102}N_{14}NaO_{19}S_3Si^+$: calc. 1733.628).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl- $(8^{i} \rightarrow 5'-S)$ -2',3'-O-isopropylidene-5'-thioatine-6-methyl- $(6^{i} \rightarrow 5'-S)$ -2',3'-O-isopropylidene-5'-thioatenosine-8-methyl- $(8^{i} \rightarrow 5'-S)$ -6-(hydroxymethyl)-2',3'-O-isopropylidene-5'-thiouridine (**20**). Under N₂, a soln. of **19** (30 mg, 18 µmol) in CH₂Cl₂ (1 ml) was treated with Cl₂CHCO₂H (50 µl, 0.6 mmol) and Et₃SiH (10 µl,

Table 6 (cont.)

Solvent	16 CDCl ₃	17 CDCl ₃	18 CDCl ₃	19 CDCl ₃	20 (D ₆)DMSO	21 ^a) (D ₆)DMSO
Adenosine unit IV						
C(2/IV)			152.41	153.12 ^b)	152.25	152.25
C(4/IV)			149.89	150.46°)	149.66 ^b)	149.64 ^b)
C(5/IV)			122.14	118.26^{d})	117.78	117.78
C(6/IV)			152.65	155.75°)	155.51°)	155.50
C(8/IV)			152.18 ^b)	149.46°)	148.08	147.87
$CH_2 - C(8/IV)$			27.90	29.81	28.89	27.04
C(1'/IV)			87.83	89.02 ^f)	88.89	89.09
C(2'/IV)			83.27	83.17	82.45 ^d)	82.22°)
C(3'/IV)			81.87	82.98 ^g)	81.47	81.17
C(4'/IV)			85.07	88.02	85.57	85.53
C(5'/IV)			62.91	62.88	62.58	61.30
Uridine unit III						
C(2/III)		151.71 ^b)	152.06 ^b)	152.53 ^h)	150.72 ^e)	150.70 ^d)
C(4/III)		162.62	162.24	^m)	161.92	161.92
C(5/III)		103.23°)	104.12°)	104.06	103.43	103.42
C(6/III)		151.16 ^b)	151.28 ^b)	151.33 ⁱ)	151.14	151.15
$CH_2 - C(6/III)$		33.00 ^d)	33.48 ^d)	32.90 ^k)	31.64	31.82
C(1'/III)		91.44	91.32	^m)	90.44	90.42
C(2'/III)		84.44 ^e)	83.95	85.27 ¹)	84.18 ^f)	84.18 ^e)
C(3'/III)		84.24°)	83.95	84.83	83.70 ^g)	83.35
C(4′/III)		89.40	89.81	89.41	87.45 ^h)	87.45 ^f)
C(5′/III)		32.62 ^d)	33.28 ^d)	34.15 ^k)	33.53 ⁱ)	33.28
Adenosine unit II						
C(2/II)	152.53	152.46	152.41	152.61 ^b)	152.46	152.46
C(4/II)	149.38	149.64	149.32	150.46°)	149.71 ^b)	149.71 ^b)
C(5/II)	122.32	123.22	122.14	118.40^{d})	117.78	117.78
C(6/II)	152.94	152.46 ^b)	152.65	155.40°)	155.48°)	155.50
C(8/II)	151.66 ^b)	150.79	151.21 ^b)	150.28°)	147.89	147.87
$CH_2 - C(8/II)$	31.37	31.48	27.90	29.81	28.89	27.04
C(1'/II)	87.96	88.10	88.00	88.53 ^f)	88.81	88.80
C(2'/II)	83.74	83.77 ^e)	83.95	83.17	82.64 ^d)	82.62°)
C(3'/II)	84.20	84.03°)	83.27	82.20 ^g)	83.73	83.68
C(4'/II)	86.87	87.51	87.83	88.02	87.06	86.26
C(5'/II)	33.55	33.00 ^d)	33.28 ^d)	32.90 ^k)	32.61 ⁱ)	33.28
Uridine unit I						
C(2/I)	152.53 ^b)	152.08 ^b)	152.06 ^b)	152.53 ^h)	150.79 ^e)	150.79 ^d)
C(4/I)	163.41	163.08	163.05	163.05	162.64	162.64
C(5/I)	103.71	103.86°)	103.48°)	104.06	100.86	100.85
C(6/I)	151.66 ^b)	150.95 ^b)	151.09 ^b)	151.33 ⁱ)	154.84	154.83
$CH_2 - C(6/I)$	62.53	62.34	62.57	62.88	59.25	59.24
C(1'/I)	92.63	92.07	92.14	^m)	90.80	90.81
C(2'/I)	84.82	85.01 ^e)	84.71	85.07 ¹)	84.40 ^f)	84.40 ^e)
C(3'/I)	84.82	84.44°)	84.52	84.83	83.35 ^g)	83.35
C(4'/I)	90.42	89.66	90.14	89.41	87.64 ^h)	87.57 ^f)
C(5'/I)	33.55	33.78 ^d)	32.80 ^d)	34.15 ^k)	33.23 ⁱ)	33.28
· /		/	/	/	,	

Table 7. Selected ¹³ C-NMR Chemical Shifts [ppm] of the A*[s]U* Dimer 16 . the U*[s]A*[s]U* Trimer 17 .
and the $A^*[s]U^*[s]A^*[s]U^*$ Tetramers 18–21

^a) Assignments based on a HSQC and a HMBC spectrum. ^b) $^{-1}$) Assignments may be interchanged. ^m) Hidden by the noise.

63 μmol), and stirred for 10 min at 23°. The mixture was poured into sat. NaHCO₃ soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. Trituration of the crude material in cyclohexane, followed by FC (CH₂Cl₂/MeOH/NH₄OH 95:5:1 → 90:10:1), gave **20** (6 mg, 24%). *R*_f (CH₂Cl₂/MeOH 9:1) 0.30. [*a*]₂₅^D = -86.5 (*c* = 1.0, CHCl₃). UV 263 (31625). IR (CHCl₃): 3472*w* (br.), 3389*w* (br.), 3327*w* (br.), 3195*w* (br.), 2971*m*, 2931*m*, 1696*s* (br.), 1643*m*, 1604*m*, 1522*w*, 1478*w*, 1425*m*, 1386*m*, 1376*m*, 1331*w*, 1298*w*, 1157*m*, 1089*s*, 1046*m*. ¹H-NMR (500 MHz, (D₆)DMSO): see *Table* 6; additionally, 11.40 (br. *s*, H−N(3/I), H−N(3/III)); 7.25 (br. *s*, 2 NH₂); 5.84 (*t*, *J* = 5.5, *H*OCH₂−C(6/I)); 1.54, 1.53, 1.41, 1.39, 1.32, 1.31, 1.24, 1.23 (8*s*, 4 Me₂CO₂); 1.47 (*sept.*, *J* = 6.8, Me₂CH); 0.770, 0.768 (2*d*, *J* = 6.8, Me₂CH); 0.72, 0.71 (2*s*, Me₂CSi); −0.10, −0.11 (2*s*, Me₂CSi); 20.03, 20.00 (2*q*, *Me*₂CH); 18.19, 18.16 (2*q*, *Me*₂CSi); −3.71, −3.75 (2*q*, Me₂Si). HR-MALDI-MS: 1480.474 (34), 1479.481 (62), 1478.483 (86), 1477.476 (100, [*M*+K]⁺, C₆₂H₈₆NI₁₄O₁₈S₃Si⁺; calc. 1477.481), 1464.499 (31), 1463.503 (51), 1462.507 (70), 1461.505 (86, [*M*+Na]⁺, C₆₂H₈₆NI₁₄NaO₁₈S₃Si⁺; calc. 1461.507).

2',3'-O-Isopropylideneadenosine-8-methyl-(8¹ → 5'-S)-2',3'-O-isopropylidene-5'-thiouridine-6-methyl-(6¹ → 5'-S)-2',3'-O-isopropylidene-5'-thioadenosine-8-methyl-(8¹ → 5'-S)-6-(hydroxymethyl)-2',3'-O-isopropylidene-5'-thiouridine (**21**). Under N₂, a soln. of **20** (60 mg, 30 µmol) in THF (1 ml) was treated with (HF)₃·Et₃N (50 µl, 0.3 mmol) and stirred for 3 d at 23°. The mixture was poured into sat. NaHCO₃ soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. The crude material was purified by repeated trituration with hexane and AcOEt to yield **21** (15 mg, 38%). $R_{\rm f}$ (CH₂Cl₂/MeOH 92:8) 0.37. $[a]_{\rm D}^{25} = -41.8$ (c = 1.0, CHCl₃). UV 263 (48259). IR (CHCl₃): 3527w, 3472w, 3408w, 3319w, 3200w, 3019s, 2962w, 2928w, 1710m, 1682m, 1644w, 1603w, 1455w, 1304w, 1276w, 1262m, 1221s, 1093m, 1011m. ¹H-NMR (300 MHz, (D₆)DMSO; assignments based on a HSQC and a HMBC spectrum): see *Table* 6; additionally, 11.41 (br. *s*, H−N(3/I and III)); 7.32, 7.29 (2 br. *s*, 2 NH₂); 7.3–7.1 (br. *s*, HO−C(5'/IV)); 5.90–5.78 (br. *s*, HOCH₂−C(6/I)); 1.54 (2 Me), 1.39, 1.31 (2 Me), 1.28, 1.23 (2 Me) (5s, 4 Me₂C). ¹³C-NMR (150 MHz, (D₆)DMSO; assignments based on a HSQC and a HMBC spectrum): see *Table* 7; additionally, 113.25, 113.08, 112.47 (2 C) (3s, 4 Me₂C); 26.85, 26.83, 26.49, 26.45, 25.18, 25.04, 24.94, 24.87 (8q, 4 Me₂C). HR-MALDI-MS: 1322.392 (16), 1321.391 (38), 1320.392 (67), 1319.389 (100, [M + Na]⁺, C₅₄H₆₈N₁₄NaO₁₈S⁺; calc. 1319.390).

5'-S-Acetyl-2',3'-O-isopropylidene-5'-thiouridine-6-methyl-($6^1 \rightarrow 5'$ -S)-N⁶-benzoyl-2',3'-O-isopropylidene-8-{[(4-methoxyphenyl)diphenylmethoxy]methyl]-5'-thioadenosine (22). Under N₂, a soln. of 13(410 mg, 0.53 mmol) in O₂-free MeOH (2 ml) was treated with freshly powdered K₂CO₃ (220 mg, 1.55 mmol) and stirred for 10 min at 23° . After dilution with sat. NH₄Cl soln. (20 ml), the mixture was extracted with CH2Cl2. The combined org. phases were washed with brine, dried (MgSO4), and evaporated. Under N₂, a soln. of the residue (380 mg) in O₂-free DMF (2 ml) was treated with 10 (203 mg, 0.52 mmol) and K₂CO₃ (118 mg, 0.85 mmol), and stirred for 2 h at 23°. The mixture was poured into sat. NH₄Cl soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated to yield 22 (530 mg, 94%) that was directly used for the next step. For analysis, a sample was purified by FC (AcOEt/cyclohexane $3:2 \rightarrow 1:0$). $R_{\rm f}$ (AcOEt/cyclohexane 4:1) 0.35. $[\alpha]_{\rm D}^{25} =$ -34.3 (c = 1.0, CHCl₃). IR (CHCl₃): 3395w (br.), 3204w (br.), 3016m, 1697s (br.), 1614m, 1588w, 1510m, 1489w, 1448m, 1428m, 1384m, 1372w, 1356w, 1299w, 1259m, 1243m, 1157w, 1090m, 1070m, 1037w. ¹H-NMR (300 MHz, CDCl₃): see *Table 8*; additionally, 11.96 (br. s, H–N(3/II)); 10.55 (br. s, HN–C(6/ I)); 8.15 - 8.01 (m, 2 arom. H); 7.52 - 7.21 (m, 15 arom. H); 6.85 - 6.79 (m, 2 arom. H); 3.75 (s, MeO); 2.25 (s, AcS); 1.57, 1.52, 1.35 (2 Me) (3s, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see Table 9; additionally, 194.49 (s, SC=O); 165.12 (s, NHC=O); 158.68, 143.39, 143.09, 134.11, 132.03 (5s); 132.30 (d); 130.35 (2d); 128.56-127.98 (several d); 127.23, 127.15 (2d); 114.36, 113.49 (2s, 2 Me₂C); 113.36 (2d); 88.15 (s, Ph₂C); 55.23 (q, MeO); 30.57 (q, MeC=O); 27.37, 27.22, 25.47, 25.33 (4q, 2 Me₂C). HR-MALDI-MS: $1108.362 (19), 1107.357 (50), 1106.353 (68, [M + Na]^+, C_{56}H_{58}N_7NaO_{12}S_2^+; calc. 1106.340), 1086.370 (29), 1086.3$ 1085.365 (66), 1084.359 (100, $[M + H]^+$, $C_{56}H_{59}N_7O_{12}S_2^+$; calc. 1084.358).

5'-S-Acetyl-N⁶-benzoyl-2',3'-O-isopropylidene-5'-thioadenosine-8-methyl- $(8^{i} \rightarrow 5'-S)$ -2',3'-O-isopropylidene-5'-thiouridine-6-methyl- $(6^{i} \rightarrow 5'-S)$ -N⁶-benzoyl-2',3'-O-isopropylidene-8-{[(4-methoxyphenyl)-diphenylmethoxy]methyl}-5'-thioadenosine (**23**). Under N₂, a soln. of **22** (110 mg, 0.1 mmol) in O₂-free

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Solvent	22 CDCl ₃	23 ^a) CDCl ₃	24 (D ₆)DMSO	25 (D ₆)DMSO	$\begin{array}{c} \textbf{26}^{\mathrm{b}})\\ \mathrm{CDCl}_{3}\left(2^{\circ}\right)\end{array}$	27 ^c) (D ₆)DMSO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Uridine unit IV						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(5/IV)			5.59 ^d)	5.63 ^d)	5.87	5.64 ^d)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 - C(6/IV)$			3.79 - 3.60	3.78 - 3.60	3.85/3.11	3.70-3.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(1'/IV)			5.76°)	5.71°)	5.23	5.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2'/IV)			5.18	5.17	5.11	4.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3'/IV)			4.73	4.75 - 4.63	4.92	4.10 - 4.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(4'/IV)			4.08 - 3.98	4.10 - 3.92	3.90	3.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H - C(5'/IV)			4.32 - 4.23	4.32 - 4.20	3.91/3.44	3.59/3.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J(H_{\rm H},H_{\rm V}/IV)$			h)	h)	16.8	h)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(1'.2'/IV)			< 1.5	< 1.5	h)	3.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(2',3'/IV)			6.3	6.0	6.0	h)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(3', 4'/IV)			3.9	h)	2.4	6.6
Adenosine unit III H	J(4',5'/IV)			h)	h)	h)	3.4/5.4
Addenosine tuni III Reference Second S)))	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Adenosine unit III		0.71	0.121	0.121	7.04	0.12
$\begin{array}{c} \mathrm{CH}_2-\mathrm{C}(8/\Pi) & 4.07-3.94 & 5.79-3.60 & 5.78-5.60 & 4.07/3.64 & 4.06-4.02 \\ \mathrm{H-C}(2'/\Pi) & 6.25 & 6.20 & 6.20 & 6.31 & 5.87 \\ \mathrm{H-C}(2'/\Pi) & 5.78 & 5.66 & 5.64 & 5.20 & 5.08 \\ \mathrm{H-C}(3'/\Pi) & 5.06 & 5.02 & 5.01^{\mathrm{g}}) & 5.13 & 4.31 \\ \mathrm{H-C}(4'/\Pi) & 4.24 & 4.24-4.15 & 4.10-3.92 & 4.48 & 4.06-4.02 \\ 2\mathrm{H-C}(5'/\Pi) & 3.10(3.00 & 2.94-2.68 & 2.72-2.64 & 3.40/2.54 & 3.02/2.91 \\ J(1^{\mathrm{g}},1'\Pi) & ^{\mathrm{h}}) & ^{\mathrm{h}}) & ^{\mathrm{h}}) & ^{\mathrm{h}}) & ^{\mathrm{h}}) & 14.9 & ^{\mathrm{h}}) \\ J(1^{\mathrm{g}},2'/\Pi) & 1.5 & 1.5 & 1.8 & ^{\mathrm{h}}) & 5.2 \\ J(2^{\mathrm{g}},3'/\Pi) & 6.3 & 6.3 & 6.3 & 6.0 & ^{\mathrm{h}}) \\ J(3^{\mathrm{g}},4'/\Pi) & 3.3 & 3.0 & 3.0 & ^{\mathrm{h}}) & ^{\mathrm{h}}) & 10.8/^{\mathrm{h}}) & 5.1/4.8 \\ \hline Uridine unit II \\ \mathrm{H-C}(5/\Pi) & 4.92 & 5.09 & 5.63^{\mathrm{d}}) & 5.62^{\mathrm{d}}) & 4.77 & 5.63^{\mathrm{d}}) \\ \mathrm{C}(\mathrm{H}_2-\mathrm{C}(6/\Pi) & 3.73/3.32 & 3.59/3.34 & 3.79-3.60 & 3.78-3.60 & 4.05/3.48 & 3.70-3.65 \\ \mathrm{H-C}(2'/\Pi) & 5.74 & 5.68 & 5.71^{\mathrm{e}}) & 5.75^{\mathrm{c}}) & 6.06 & 5.43 \\ \mathrm{H-C}(2'/\Pi) & 5.74 & 5.68 & 5.71^{\mathrm{e}}) & 5.75^{\mathrm{c}}) & 6.06 & 5.43 \\ \mathrm{H-C}(2'/\Pi) & 5.29 & 5.16 & 5.15 & 5.14 & 5.49 & 4.56 \\ \mathrm{H-C}(3'/\Pi) & 4.84 & 4.87 & 4.71 & 4.75-4.63 & 4.87 & 4.17 \\ \mathrm{H-C}(3'/\Pi) & 4.06 & 4.11 & 4.08-3.98 & 4.10-3.92 & 4.41 & 3.86 \\ 2\mathrm{H-C}(5'/\Pi) & 3.25-3.01 & 2.93-2.79 & 2.94-2.68 & 2.72-2.64 & 2.58/2.45 & 2.91/2.79 \\ J(\mathrm{H}_{a},\mathrm{H}_{a}/\mathrm{H}) & 14.7 & 15.0 & ^{\mathrm{h}}) & ^{\mathrm{h}} & 13.2 & ^{\mathrm{h}}) \\ J(1',2'/\Pi) & (1.5 & <1.5 & <1.5 & <1.5 & ^{\mathrm{h}}) & 3.2 \\ J(2',3'/\Pi) & 6.3 & 6.3 & 6.6 & 6.0 & 6.0 & ^{\mathrm{h}}) \\ J(3',4'/\Pi) & 3.9 & 4.2 & 3.9 & ^{\mathrm{h}}) & ^{\mathrm{h}} & 0.2/^{\mathrm{h}}) & 5.67.1 \\ \hline Adenosine unit I \\ H-C(2'I) & 8.77 & 8.74 & 8.17^{\mathrm{f}}) & 8.14^{\mathrm{f}}) & 8.38 & 8.15 \\ \mathrm{CH}_2-\mathrm{C}(I'\Pi) & 5.23 & 5.11 & 4.85 & 5.00^{\mathrm{e}}) & 5.41 & 4.31 \\ \mathrm{H-C}(4'/\Pi) & 4.46 & 4.34 & 424-415 & 410-3.92 & 4.65 & 4.06-402 \\ \hline \end{array}$	$H = C(2/\Pi I)$		8./1	8.131)	8.131)	/.94	8.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 - C(8/III)$		4.07-3.94	3.79-3.60	3./8-3.60	4.0//3.64	4.06-4.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H = C(17/III)		6.25	6.20	6.20	6.31	5.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2'/III)		5.78	5.66	5.64	5.20	5.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3'/III)		5.06	5.02	5.01 ^g)	5.13	4.31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H-C(4'/III)		4.24	4.24 - 4.15	4.10-3.92	4.48	4.06-4.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H - C(5'/III)		3.10/3.00	2.94-2.68	2.72-2.64	3.40/2.54	3.02/2.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J(H_a,H_b/III)$		n)	ⁿ)	ⁿ)	14.9	ⁿ)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(1',2'/III)		1.5	1.5	1.8	ⁿ)	5.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(2',3'/III)		6.3	6.3	6.3	6.0	^h)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(3',4'/III)		3.3	3.0	3.0	^h)	^h)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J(4',5'/III)		7.5/6.9	^h)	h)	10.8/h)	5.1/4.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Uridine unit II						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(5/II)	4.92	5.09	5.63 ^d)	5.62 ^d)	4.77	5.63 ^d)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 - C(6/II)$	3.73/3.32	3.59/3.34	3.79-3.60	3.78-3.60	4.05/3.48	3.70-3.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(1'/II)	5.74	5.68	5.71°)	5.75°)	6.06	5.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2'/II)	5.29	5.16	5.15	5.14	5.49	4.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3'/II)	4.84	4.87	4.71	4.75-4.63	4.87	4.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(4'/II)	4.06	4.11	4.08 - 3.98	4.10-3.92	4.41	3.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H - C(5'/II)	3.25 - 3.01	2.93 - 2.79	2.94 - 2.68	2.72 - 2.64	2.58/2.45	2.91/2.79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$J(H_a,H_b/II)$	14.7	15.0	h)	h)	13.2	h)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(1',2'/II)	< 1.5	< 1.5	< 1.5	< 1.5	h)	3.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J(2',3'/II)	6.3	6.3	6.6	6.0	6.0	^h)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J(3',4'/II)	3.9	4.2	3.9	^h)	^h)	6.3
Adenosine unit I $H-C(2/I)$ 8.77 8.74 8.17 ^f) 8.14 ^f) 8.38 8.15 $CH_2-C(8/I)$ 4.79/4.50 4.65/4.49 4.11/3.97 4.75-4.63 5.07/4.96 4.70/4.65 $H-C(1'/I)$ 6.23 6.22 5.97 6.31 6.63 6.02 $H-C(2'/I)$ 5.37 5.44 5.60 5.57 5.05 5.08 $H-C(3'/I)$ 5.23 5.11 4.85 5.00 ^g) 5.41 4.31 $H-C(4'/I)$ 4.46 4.34 4.24-4.15 4.10-3.92 4.65 4.06-4.02	J(4',5'/II)	6.9/6.9	7.2/7.2	^h)	h)	10.2/ ^h)	5.6/7.1
H-C(2/I)8.778.74 8.17^{f}) 8.14^{f}) 8.38 8.15 CH2-C(8/I)4.79/4.504.65/4.494.11/3.97 $4.75-4.63$ $5.07/4.96$ $4.70/4.65$ H-C(1/I)6.236.225.976.316.636.02H-C(2/I)5.375.445.605.575.055.08H-C(3/I)5.235.114.85 5.00^{g})5.414.31H-C(4/I)4.464.34 $424-415$ $410-392$ 465 $406-402$	Adenosine unit I			,	,	,	
$\begin{array}{cccccc} CH_2 - C(8/I) & 4.79/4.50 & 4.65/4.49 & 4.11/3.97 & 4.75-4.63 & 5.07/4.96 & 4.70/4.65 \\ H-C(1/I) & 6.23 & 6.22 & 5.97 & 6.31 & 6.63 & 6.02 \\ H-C(2/I) & 5.37 & 5.44 & 5.60 & 5.57 & 5.05 & 5.08 \\ H-C(3/I) & 5.23 & 5.11 & 4.85 & 5.00^8) & 5.41 & 4.31 \\ H-C(4/I) & 4.46 & 4.34 & 4.24-4.15 & 4.10-3.92 & 4.65 & 4.06-4.02 \end{array}$	H = C(2/I)	8.77	8.74	8.17 ^f)	8.14 ^f)	8.38	8.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_{2} = C(8/I)$	4 79/4 50	4 65/4 49	4 11/3 97	475-463	5 07/4 96	4 70/4 65
$H = C(2/I)$ 5.25 5.22 5.57 6.51 6.65 6.62 $H = C(2/I)$ 5.37 5.44 5.60 5.57 5.05 5.08 $H = C(3/I)$ 5.23 5.11 4.85 5.00^g 5.41 4.31 $H = C(4/I)$ 4.46 4.34 $4.24 - 4.15$ $4.10 - 3.92$ 4.65 $4.06 - 4.02$	H = C(1'/L)	6.23	6.22	5 97	6 31	6.63	6.02
H $C(217)$ 3.57 3.44 3.60 3.57 5.05 5.06 H $-C(3/I)$ 5.23 5.11 4.85 5.00^8 5.41 4.31 H $-C(4/I)$ 4.46 4.34 $4.24-4.15$ $4.10-3.92$ 4.65 $4.06-4.02$	$H_{-C(2'/I)}$	5 37	5 44	5.60	5 57	5.05	5.08
H = C(3/1) 3.25 3.11 4.05 5.00 5.41 4.01 H = C(4/1) 4.46 4.34 4.24 - 4.15 4.10 - 3.92 4.65 4.06 - 4.02	$H_{-C(3'/I)}$	5.23	5.11	4.85	5.00g)	5 41	4 31
	H - C(4'/I)	4.46	4.34	4.24-4.15	4.10 - 3.92	4.65	4.06-4.02

Table 8. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the U*[s]A* Dimer 22,
the A*[s]U*[s]A* Trimer 23, and the U*[s]A*[s]U*[s]A* Tetramers 24–27

· · · · ·	· · · · · · · · · · · · · · · · · · ·					
Solvent	22 CDCl ₃	23 ^a) CDCl ₃	24 (D ₆)DMSO	25 (D ₆)DMSO	26 ^b) CDCl ₃ (2°)	27 ^c) (D ₆)DMSO
2 H-C(5'/I)	3.25-3.01	2.93-2.79	2.94 - 2.68	2.72-2.64	3.52/2.85	3.02/2.91
$J(H_a,H_b/I)$	12.3	12.0	14.4	h)	11.4	13.1
J(1',2'/I)	< 1.5	1.8	2.7	2.1	h)	5.3
J(2',3'/I)	6.3	6.6	6.3	6.3	6.0	h)
J(3',4'/I)	4.8	4.2	3.0	3.0	4.8	h)
J(4',5'/I)	h)	7.8/4.2	^h)	h)	10.2/ ^h)	5.1/4.8

^{a)} J(5'a,5'b/III) = 13.5 Hz. ^{b)} At 600 MHz. Broad signals with the exception of H–C(4/I) (couplings smaller than 2 Hz not visible). Assignment based on DQFCOSY, TOCSY, and NOESY spectra. J(5'a,5'b/I) = 15.8, J(5'a,5'b/II) = 13.8, J(5'a,5'b/III) = 15.3, J(5'a,5'b/IV) = 12.3 Hz. ^{c)} At 500 MHz. Assignments based on DQFCOSY, HSQC, and HMBC spectra. Broad CHOH and CH₂OH signals due to ${}^{3}J(H,OH)$ couplings. ${}^{4}J(5,NH/II) = {}^{4}J(5,NH/IV) = 2.1$, J(5'a,5'b/II) = J(5'a,5'b/III) = 13.6, J(5'a,5'b/II) = 13.5, J(5'a,5'b/IV) = 11.8 Hz. ^{d)} – ^g) Assignments may be interchanged. ^h) Not assigned.

MeOH (1 ml) was treated with freshly powdered K₂CO₃ (42 mg, 0.3 mmol), and stirred for 10 min at 23°. After dilution with sat. NH₄Cl soln. (20 ml) under N₂, the mixture was extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. Under N₂, a soln. of the residue (100 mg) in O_2 -free DMF (1 ml) was treated with 12 (49 mg, 96 µmol) and K_2CO_3 (53 mg, 0.38 mmol), and stirred for 2 h at 23°. The mixture was poured into sat. NH₄Cl soln. and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated to yield 23 (150 mg, >98%) that was directly used for the next step. For analysis, a sample was purified by FC (AcOEt/cyclohexane 3:2 \rightarrow 1:0). $R_{\rm f}$ (AcOEt) 0.53. $[a]_{\rm D}^{25} = -32.5$ (c = 1.0, CHCl₃). IR (CHCl₃): 3404w (br.), 3211w (br.), 3015m, 2928m, 2855w, 1698s (br.), 1613s, 1589m, 1510w, 1458m, 1448m, 1425m, 1384m, 1376m, 1356m, 1267m, 1090s. 1H-NMR (300 MHz, CDCl₃): see Table 8; additionally, 10.4 (br. s, H-N(3/II); 9.78 (br. s), 9.34 (s) (HN-C(6/I), HN-C(6/III)); 8.06-8.00 (m, 2 arom. H); 7.92-7.90 (m, 2 arom. H); 7.52-7.19 (m, 18 arom. H); 6.84-6.79 (m, 2 arom. H); 3.74 (s, MeO); 2.27 (s, AcS); 1.56, 1.53, 1.46, 1.36, 1.35, 1.27 (6s, 3 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see Table 9; additionally, 194.14 (s, SC=O); 165.01 162.44 (2s, 2 NHC=O); 158.69, 143.35, 143.13 (3s); 134.06 (2s); 133.62 (s); 132.43 (2d); 130.38 (2d); 128.54-127.94 (several d); 127.21, 127.15 (2d); 114.48, 114.12, 113.58 (3s, 3 Me₂C); 113.33 (2d); 88.11 (s, Ph₂C); 55.24 (q, MeO); 30.56 (q, MeC=O); 27.34, 27.19, 27.13, 25.50, 25.38, 25.30 (6q, 3 Me_2C). HR-ESI-MS: 1547.479 (12), 1546.475 (26), 1545.473 (27, $[M + Na]^+$, $C_{77}H_{78}N_{12}NaO_{16}S_3^+$; calc. 1545.472, 1525.478 (8), 1524.471 (20), 1523.470 (27, $[M + H]^+$, $C_{77}H_{79}N_{12}O_{16}S_3^+$; calc. 1523.490), 774.230(16), 773.728 (27), 773.227 (29, $[M + Na + H]^{2+}$, $C_{77}H_{79}N_{12}NaO_{16}S_3^{2+}$; calc. 773.240), 763.738 (26), 763.235 (58), 762.734 (96), 762.235 (100, $[M + 2 H]^{2+}$, $C_{77}H_{80}N_{12}O_{16}S_3^{2+}$; calc. 762.249).

Solvent	22 CDCl ₃	23 CDCl ₃	25 (D ₆)DMSO	26 CDCl ₃	27 ^a) (D ₆)DMSO
Uridine unit IV					
C(2/IV)			150.99 ^b)	151.41	150.60
C(4/IV)			161.75°)	161.9	162.02
C(5/IV)			103.35	103.7	103.13
C(6/IV)			152.43 ^d)	152.27	152.16 ^b)
$CH_2 - C(6/IV)$			32.63	32.78 ^b)	32.21
C(1'/IV)			90.76	91.56	91.71
C(2'/IV)			84.39 ^e)	85.26°)	71.27
C(3'/IV)			81.87	80.25	69.59
C(4'/IV)			87.54	91.03	84.70
C(5'/IV)			63.59	62.19	61.83
Adenosine unit III					
C(2/III)		151.11	150.73	150.59	152.01
C(4/III)		149.00	149.52	149.71	149.97
C(5/III)		121.98	117.45	117.8	117.79
C(6/III)		152.06^{b})	155.34	155.03	155.25
C(8/III)		151.76 ^b)	147.73	148.65	148.73
$CH_2 - C(8/III)$		31.16	31.68	30.06	27.78
C(1'/III)		89.62°)	88.78	90.11	88.77
C(2'/III)		84.05^{d})	82.86 ^e)	84.52°)	71.15°)
C(3'/III)		83.88 ^d)	83.75°)	85.14°)	72.50^{d})
C(4'/III)		86.68	85.46	89.66	83.28°)
C(5'/III)		32.05 ^e)	33.66	32.72 ^b)	33.23
Uridine unit II					
C(2/II)	152.63 ^b)	152.43	150.65 ^b)	151.41	150.34
C(4/II)	162.37	162.38	161.78°)	161.9	162.02
C(5/II)	103.96	103.95	103.35	103.7	103.13
C(6/II)	151.34 ^b)	151.30	152.30^{d})	152.27	152.01^{b})
$CH_2 - C(6/II)$	31.90°)	31.51°)	32.63	32.50^{b})	32.21
C(1'/II)	92.80	91.24	90.76	91.56	91.94
C(2'/II)	85.06 ^d)	84.78 ^d)	84.12 ^e)	85.65°)	71.27
C(3'/II)	84.46^{d})	84.55 ^d)	83.36°)	85.26°)	72.27
C(4'/II)	91.32	89.89	89.10	91.03	82.43
C(5'/II)	31.54	32.93°)	33.66	32.13 ^b)	33.83
Adenosine unit I					
C(2/I)	150.89	151.11	151.12	151.50	152.16
C(4/I)	150.96	150.35	149.52	149.71	150.12
C(5/I)	125.27	124.22	117.69	117.8	118.01
C(6/I)	151.12 ^b)	152.06 ^b)	155.68	155.03	155.61
C(8/I)	150.96	151.76 ^b)	150.65	149.92	151.06
$CH_2 - C(8/I)$	59.86	59.74	56.78	58.12	56.57
C(1'/I)	89.54	89.89°)	88.78	90.11	88.72
$\dot{C(2'/I)}$	84.92 ^d)	83.88 ^d)	82.66°)	84.61°)	71.07°)
C(3'/I)	84.31 ^d)	83.66 ^d)	83.45°)	85.14°)	72.43 ^d)
C(4'/I)	88.15	88.29	85.46	89,66	83.23°)
C(5'/I)	32.68°)	32.83°)	33.66	31.94 ^b)	33.23
^a) Assignment based interchanged.	d on DQFCOS	SY, HSQC, ar	nd HMBC spectra	a. ^b)- ^e) Assign	nment may be

Table 9. Selected ¹³C-NMR Chemical Shifts [ppm] of the $U^*[s]A^*$ Dimer 22, the $A^*[s]U^*[s]A^*$ Trimer 23,and the $U^*[s]A^*[s]U^*[s]A^*$ Tetramers 25–27

1037s, 1030s, 1011*m*. ¹H-NMR (300 MHz, (D₆)DMSO): see *Table 8*; additionally, 7.46–7.24 (*m*, 12 arom. H); 6.93 (*d*, J = 9.0, 2 arom. H); 6.68 (br. *s*, 2 NH₂); 3.75 (*s*, MeO); 1.52, 1.44, 1.41, 1.38, 1.30, 1.28, 1.25, 1.21 (8*s*, 4 Me₂C); 1.50–1.40 (hidden *sept*., Me₂CH); 0.80 (*d*, J = 6.9, Me_2 CH); 0.76 (*s*, Me₂CSi); 0.01, -0.01 (2*s*, Me₂Si); signals of H–N(3/II) and H–N(3/IV) hidden by the noise. HR-ESI-MS: 1735.652 (11), 1734.656 (14), 1733.648 (10, $[M + Na]^+$, $C_{82}H_{102}N_{14}NaO_{19}S_3Si^+$; calc. 1733.628), 1714.671 (12), 1713.671 (49), 1712.672 (89), 1711.679 (56, $[M + H]^+$, $C_{82}H_{103}N_{14}O_{19}S_3Si^+$; calc. 1711.646), 1462.465 (16), 1461.470 (25, $[M - MMTr + H + Na]^+$, $C_{62}H_{86}N_{14}NaO_{18}S_3Si^+$; calc. 1461.507), 1442.467 (12), 1441.468 (47), 1440.472 (80), 1439.479 (100, $[M - MMTr + 2 H]^+$, $C_{82}H_{104}N_{14}O_{19}S_3Si^+$; calc. 1439.525), 857.833 (80), 857.334 (22), 856.832 (45), 856.334 (45, $[M + 2 H]^{2+}$, $C_{82}H_{104}N_{14}O_{19}S_3Si^+$; calc. 856.326).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneuridine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'- $O-is opropylidene-5'-thio a denosine-8-methyl-(8^{l} \rightarrow 5'-S)-2', 3'-O-is opropylidene-5'-thio uridine-6-methyl-(8^{l} \rightarrow 5'-S)-2', 3'-S)-2', 3'-S$ $(6^{1} \rightarrow 5^{\prime} - S)$ -8-(hydroxymethyl)-2',3'-O-isopropylidene-5'-thioadenosine (25). Under N₂, a soln. of 24 (30 mg, 17 µmol) in CH₂Cl₂ (1 ml) was treated with Cl₂CHCO₂H (100 µl, 1.22 mmol) and Et₃SiH (25 µl, 0.16 mmol), and stirred for 10 min at 23°. The mixture was poured into sat. NaHCO₃ soln. and extracted with CH2Cl2. The combined org. phases were washed with brine, dried (MgSO4), and evaporated. Trituration of the crude material with MeOH gave 25 (15 mg, 60%). Rf (AcOEt/MeOH 92:8) 0.31. $[\alpha]_{D}^{25} = -29.1 (c = 1.0, CHCl_3). UV (CHCl_3): 263 (45854). IR (CHCl_3): 3387w (br.), 3323w, 3171w (br.),$ 3015w, 2962m, 1710s, 1690m, 1647m, 1604m, 1443w, 1425w, 1377m, 1331w, 1298w, 1257w, 1157w (br.), 1089m (br.). ¹H-NMR (300 MHz, (D₆)DMSO): see *Table 8*; additionally, 11.40 (br. s, H-N(3/II), H-N(3/IV)); 7.31, 7.28 (2s, 2 NH₂); 5.80 (t, J = 5.7, HOCH₂-C(8/I); 1.52, 1.51, 1.43, 1.38, 1.29 (2 Me), 1.24, 1.21 (7s, $4 \text{ Me}_2\text{C}$); 1.50 - 1.40 (hidden sept., Me_2CH); 0.79 (d, J = 6.9, $Me_2\text{CH}$); 0.76 (s, Me_2CSi); -0.01, -0.02 (2s, Me₂Si). ¹³C-NMR (75 MHz, (D₆)DMSO): see Table 9; additionally, 113.19, 113.15, 112.38, 112.25 (4s, 4 Me₂C); 27.07, 26.97 (3 Me), 25.16 (3 Me), 24.75 (4q, 4 Me₂C); 25.06 (s, Me₂CSi); 20.23, 20.18 (2q, Me₂CH); 18.36, 18.32 (2q, Me₂CSi); -3.30, -3.37 (2q, Me₂Si). HR-ESI-MS: 731.763 (12), 731.262 (14, $[M + H + Na]^{2+}$, $C_{62}H_{87}N_{14}NaO_{18}S_3Si^{2+}$; calc. 731.258), 721.772 (15), 721.270 (49), 720.769 (83), 720.267 (100, $[M + 2 H]^{2+}$, $C_{62}H_{88}N_{14}O_{18}S_3Si^{2+}$, calc. 720.266). Anal. calc. for C₆₂H₈₆N₁₄O₁₈S₃Si (1439.73): C 51.72, H 6.02, N 13.62; found: C 51.65, H 6.20, N 13.47.

2',3'-O-Isopropylideneuridine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-5'-thioadenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-5'-thioadenosine (**26**). Under N₂, a soln. of **25** (35 mg, 24 µmol) in THF (1 ml) was treated with (HF)₃ · Et₃N (40 µl, 0.48 mmol), and stirred for 3 d at 23°. The mixture was poured into sat. NaHCO₃ soln., and extracted with CH₂Cl₂. The combined org. phases were washed with brine, dried (MgSO₄), and evaporated. The crude material was purified by trituration in acetone to yield **26** (11 mg, 35%). *R*_f (AcOEt/MeOH/H₂O 85:10:5) 0.26. [a]²⁶₂ = −16.1 (c = 1.0, CHCl₃). UV (CHCl₃): 263 (37451). IR (CHCl₃): 3386w, 3330w, 3195w, 3019s, 2928m, 28855w, 1702s (br.), 1657m, 1610m, 1444w, 1383m, 1378m, 1330w, 1301w, 1221s, 1213s, 1091m, 1073m. ¹H-NMR (600 MHz, 2°, CDCl₃; assignments based on DQF-COSY, TOCSY, and NOESY spectra): see *Table 8*; additionally, 14.20 (s, H−N(3/IV)); 13.07 (s, H−N(3/II)); 9.22, 7.47 (2s, H₂N−C(6/I)); 7.97, 5.66 (2s, H₂N−C(6/III)); 5.77 (br. d, J = 11.5, HOCH₂−C(8/I)); 4.69 (br. d, J = 9.7, HO−C(5'/IV)); 1.65, 1.40 (2s, Me₂C/I); 1.57, 1.39 (2s, Me₂C/II); 1.55, 1.29 (2s, Me₂C/III); 1.48, 1.29 (2s, 4 Me₂C/IV). ¹³C-NMR (150 MHz, CDCl₃): see *Table 9*; additionally, 114.28, 113.80 (2s, 4 Me₂C); 27.47, 27.32, 27.32, 27.14, 25.76, 25.37, 25.26, 25.18 (8q, 4 Me₂C). HR-ESI-MS: 650.713 (11), 650.210 (35), 649.709 (64), 649.206 (100, [M + 2 H]²⁺, C₅₄H₇₀N₁₄O₁₈S³⁺; calc. 649.207).

Uridine-6-methyl-($6^1 \rightarrow 5'$ -S)-5'-thioadenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-5'-thiouridine-6-methyl-($6^1 \rightarrow 5'$ -S)-8-(hydroxymethyl)-5'-thioadenosine (**27**). A soln. of **26** (20 mg, 17 µmol) in CH₂Cl₂ (1 ml) was treated with CF₃CO₂H (1 ml) and H₂O (20 µl, 1.1 mmol), stirred for 1 h at 23°, and evaporated. The residue was triturated with acetone and neutralized (ion exchange resin *GC-120*) to afford **27** (9 mg, 52%). R_f (*RP-18*; MeOH/H₂O 1:1) 0.55. $[\alpha]_{15}^{25} = -20.7$ (c = 0.7, DMSO). IR (ATR): 3330*m* (br.), 3202*m* (br.), 1680*s* (br.), 1649*m*, 1608*m*, 1402*m*, 1384*m*, 1330*m*, 1308*m*, 1259*m*, 1094*m*, 1012*s*, 950*s*. ¹H-NMR (500 MHz, (D₆)DMSO; assignments based on DQF-COSY, HSQC, and HMBC spectra): see *Table 8*; additionally, 11.34, 11.31 (2*s*, H-N(3/II), H-N(3/IV)); 7.29 (br. *s*, 2 NH₂); 5.75 (br. *s*, HOCH₂-C(8/I)); 5.38 (br. *s*, HO-C(2'/II)); 5.03 (br. *s*, HO-C(3'/I), HO-C(3'/IV)); 4.66 (br. *s*, HO-C(5'/IV)); ¹³C-NMR (125 MHz, CDCl₃): see *Table 9*.

Determination of the Solution Structure of **26** by NMR Spectroscopy. a) NMR Measurements. 1D-¹H, 1D-¹³C, as well as 2D DQF-COSY, TOCSY (DIPSI spin lock of 10 kHz, 80 ms) and NOESY (t_m 300 ms) spectra were recorded at 600 MHz (¹H) and 150 MHz (¹³C). Because the duplex was kinetically too labile at r.t., all spectra were recorded at 2°. Residue-specific assignment of the H-atoms was achieved through a combination of COSY, TOCSY, and NOESY correlations.

b) Derivation of Distance Constraints and Structure Calculation. ¹H Assignments and volume integration of NOESY (mixing time 300 ms) cross-peaks were performed with the aid of SPARKY [20]. Distance constraints and error limits were generated from cross-peak volumes by calibration with known distances (two-spin approximation, $\pm 20\%$ error limits) through a python extension within SPARKY. The volume of cross-peaks involving Me groups or other isochronous H-atoms was corrected by division through the number of H-atoms. Distance restraints derived from NOESY were introduced into the simulated annealing calculations. Simulated annealing (SA) calculations were performed with XPLOR-NIH version 2.22 [15]. The parameter-file parnah1er1_mod_new.inp and the topology-file topalldna.hdg [21] were modified to accomodate the new CH₂SCH₂ linkers (equilibrium values for bonds and angles were based on the X-ray structure of a closely related dimer [3]). All other parameters concerning base and sugar atoms as well as force constants ($k_{bond} = 1000$ kcal/mol, $k_{angle} = 500$ kcal/mol, $k_{improper} = 500$ kcal/mol) were left unchanged. The only nonbonded interaction used was a *Van der Waals* repel function.

Two antiparallelly oriented random conformation single strands were used as the starting structure. The SA protocol (adopted from torsion-angle dynamics protocol of *Stein et al.* [22]) included 4000 steps (0.015 ps each) of high temp. torsion-angle dynamics at 20000 K, followed by 4000 (0.015 ps) steps of slow cooling to 1000 K with torsion-angle dynamics, 2000 steps (0.003 ps) of slow cooling with *Verlet* dynamics to 300 K, followed by a final *Powell* minimization.

The chemical shift of H-N(3) and their inter-strand NOEs to H-C(2) indicate that they are involved in either *Watson – Crick* or reverse *Watson – Crick* base pairing. Therefore, H-bonding within base pairs was initially defined by only a single central H-bond restraint rather than a double H-bond restraint so as to allow the NOE constraints to generate base-pairs in either *Watson – Crick* or reverse *Watson – Crick* manner. After obtaining a structure with no NOE violations which showed uniform *Watson – Crick* pairing, a second H-bond as well as planarity restraints keeping the base pairs planar were introduced before calculating the final ensemble of structures. 97 Structures were generated using the SA protocol as explained above. 64 Structures, which showed no NOE violation > 0.1 Å, no deviation from equilibrium value for bond lengths, bond angles, and improper angles of > 0.05 Å, $> 5.0^{\circ}$, and $> 1.5^{\circ}$, respectively, were accepted.

To verify that the generated antiparallel, fully Watson - Crick-paired duplex was not the result of limited sampling of conformational space, three parallel calculations were performed using the same NOE constraints but replacing the H-bond restraints file to enforce the three other possible C_2 -symmetric combinations of Watson - Crick (WC) or reverse Watson - Crick (rWC) pairing modes. I: All H-bonds between base pairs were set to rWC. II: The H-bonds between terminal base pairs were set to rWC and the two central base pairs to WC. III: The H-bonds between central base pairs were set to rWC and the two terminal base pairs to WC. In all three control calculations, none of the generated structures was within the acceptance limits for NOE-constraint violations, thus confirming the Watson - Crick pairing mode for all four base pairs of **26**.

REFERENCES

- [1] N. Bogliotti, A. Vasella, Helv. Chim. Acta 2009, 92, 1167.
- [2] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2006, 89, 2861.
- [3] A. Ritter, D. Egli, B. Bernet, A. Vasella, Helv. Chim. Acta 2008, 91, 673.
- [4] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 792.
- [5] H. Tanaka, H. Hayakawa, T. Miyasaka, *Tetrahedron* **1982**, *38*, 2635; K. Hirota, Y. Kitade, F. Iwami, S. Senda, *Chem. Pharm. Bull.* **1984**, *32*, 2591; M. P. Groziak, R. Lin, *Tetrahedron* **2000**, *56*, 9885.
- [6] J. Hollmann, E. Schlimme, *Liebigs Ann. Chem.* 1984, 98; T. Ueda, Y. Nomoto, A. Matsuda, *Chem. Pharm. Bull.* 1985, 33, 3263.

- [7] H. S. Gutowsky, A. Saika, J. Chem. Phys. 1953, 21, 1688.
- [8] A. Ritter, B. Bernet, A. Vasella, Helv. Chim. Acta 2008, 91, 1675.
- [9] P. K. Bhardwaj, A. Vasella, Helv. Chim. Acta 2002, 85, 699.
- [10] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, C. Caufield, M. Lipton, G. Chang, T. Hendrickson, W. C. Still, J. Comput. Chem. 1990, 11, 440.
- [11] 'Spartan 04 on Macintosh', Wavefunction, Inc., Irvine, CA, USA.
- [12] F. Cordier, M. Barfield, S. Grzesiek, J. Am. Chem. Soc. 2003, 125, 15750.
- [13] R. Vargas, J. Garza, D. A. Dixon, B. P. Hay, J. Am. Chem. Soc. 2000, 122, 4750.
- [14] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 864.
- [15] C. D. Schwieters, J. J. Kuszewski, N. Tjandra, G. M. Clore, J. Magn. Reson. 2003, 160, 65.
- [16] Z. Johar, Thesis ETH Zürich No. 17256, 2007, pp. 39-51.
- [17] A. J. Matthews, P. K. Bhardwaj, A. Vasella, Helv. Chim. Acta 2004, 87, 2273.
- [18] S. Eppacher, N. Solladié, B. Bernet, A. Vasella, Helv. Chim. Acta 2000, 83, 1311.
- [19] W. J. Cook, S. E. Ealick, J. A. Secrist III, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1984, 40, 885.
- [20] T. D. Goddard, D. G. Kneller, 'Program SPARKY v3.110', University of California, San Francisco, 2004.
- [21] http://spin.niddk.nih.gov/clore.
- [22] E. G. Stein, L. M. Rice, A. T. Brünger, J. Magn. Reson. 1997, 124, 154.

Received May 29, 2009